Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Utilizing Team Productivity Models in the Selection of Space Exploration Teams

2013-09-17
2013-01-2082
The term “productivity” all too often has becomes a buzz-word, ultimately diminishing its perceived importance. However, productivity is the major concern of any team, and therefore must be defined to gain an appropriate understanding of how a system is actually working. Here, productivity means the level of contribution to the throughput of a system such as defined in the Theory of Constraints. In the field of space exploration, the throughput is the number of milestones of the mission accomplished as well as the potential survival during extreme events (due to failures or other unplanned events). For a time tasks were accomplished by expert individuals (e.g., an astronaut), but recently team structures have become the norm. It is clear that with increased mission complexity, “no single entity can have complete knowledge of or the abilities to handle all matters” [10].
Technical Paper

Thermal Design in Diode Array Packaging

2002-10-29
2002-01-3261
Effective thermal management and removal of the waste heat generated at diode arrays is critical to the development of high-power solid-state lasers. Thermal design must be considered in the packaging of these arrays. Two different packages with heat dissipation through spray cooling are evaluated experimentally and numerically. Their overall performance is compared with other packaging configurations using different heat removal approaches. A novel packaging design is proposed that can fulfill the requirements of low thermal resistance, temperature uniformity among emitters in the diode array, low coolant flow rate, simplicity and low assembly cost. The effect of temperature uniformity on the pumping efficiency for gain media is examined for our novel packaging design. The thermal stress induced by temperature variation within an emitter is also considered.
Technical Paper

A Distributed Simulation of a Martian Fuel Production Facility

2017-09-19
2017-01-2022
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
Journal Article

The Semantic Web and Space Operations

2011-10-18
2011-01-2506
In this paper, we introduce the use of ontologies to implement the information developed and organized by resource planning tools into standard project management documents covering integrated cost, resource modeling and analysis, and visualization. The basic upper ontology used for NASA Space Operations is explained and the results obtained are discussed. This ontology-centered approach is looking for tighter connections between software, hardware, and systems engineering.
Journal Article

Simulation and Systems Engineering: Lessons Learned

2019-03-19
2019-01-1331
Aerospace projects live a long time. Around the turn of the century, NASA first began to discuss multi-decadal projects with respect to the tools, methods, infrastructure and culture necessary to successfully establish outposts and bases both on the Moon as well as in adjacent space. Pilot projects were completed, capabilities developed and solutions were shared across the Agency. A decade later the Mars discussion was multi-generational with planning milestones 50 years in the future. The 1970’s Requirements Document, or the 1990’s System Model are nowhere near suitable for planning, development, integration and operations of multi-national, highly complex, incredibly expensive development efforts planned to outlast not only the careers of the developers but that of their children as well. Simulation in the different forms has become very important for this multi-decadal projects. The challenge will be to device ways to create formats and views which can stand time.
Technical Paper

Effect of Inventory Storage on Automotive Flooded Lead-Acid Batteries

2019-09-20
2019-01-5081
The battery is a central part of the vehicle’s electrical system and has to undergo cycling in a wide variety of conditions while providing an acceptable service life. Within a typical distribution chain, automotive lead-acid batteries can sit in storage for months before delivery to the consumer. During storage, batteries are subjected to a wide variety of temperature profiles depending on facility-specific characteristics. Additionally, batteries typically do not receive any type of maintenance charge before delivery. Effects of storage time, temperature, and maintenance charging are explored. Flooded lead-acid batteries were examined immediately after storage and after installation in vehicles subjected to normal drive patterns. While phase composition is a major consideration, additional differences in positive active material (PAM) were observed with respect to storage parameters.
X