Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

Utilizing Team Productivity Models in the Selection of Space Exploration Teams

2013-09-17
2013-01-2082
The term “productivity” all too often has becomes a buzz-word, ultimately diminishing its perceived importance. However, productivity is the major concern of any team, and therefore must be defined to gain an appropriate understanding of how a system is actually working. Here, productivity means the level of contribution to the throughput of a system such as defined in the Theory of Constraints. In the field of space exploration, the throughput is the number of milestones of the mission accomplished as well as the potential survival during extreme events (due to failures or other unplanned events). For a time tasks were accomplished by expert individuals (e.g., an astronaut), but recently team structures have become the norm. It is clear that with increased mission complexity, “no single entity can have complete knowledge of or the abilities to handle all matters” [10].
Technical Paper

Dynamic Target State Estimation for Autonomous Aerial Vehicles using a Monocular Camera System

2007-09-17
2007-01-3844
Operations involving autonomous vehicles require knowledge of the surrounding environment including other moving vehicles. The use of vision has been regarded as an enabling technology that can provide such information. Several important applications that would benefit from this technology is autonomous aerial refueling (AAR) and target tracking. This paper considers a sensor fusion approach using traditional IMU/GPS sensors with vision to facilitate the state estimation problem of moving targets. The proposed method makes use of a moving monocular camera to estimate the relative position and orientation of targets within the image by exploiting a known reference motion. The vision state estimation problem is solved using an homography approach that employs images containing both the reference and target vehicles. A simulation involving an unmanned aerial vehicle (UAV) and two ground vehicles is documented in this paper to demonstrate the algorithm and its accuracy.
Technical Paper

A Distributed Simulation of a Martian Fuel Production Facility

2017-09-19
2017-01-2022
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
Technical Paper

Nonlinear Neural Network Modeling of Aircraft Synchronous Generator with High Power Density

2012-10-22
2012-01-2158
Preliminary investigations of nonlinear modeling of aircraft synchronous generators using neural networks are presented. Aircraft synchronous generators with high power density tend operate at current-levels proportional to the magnetic saturation region of the machine's material. The nonlinear model accounts for magnetic saturation of the generator, which causes the winding flux linkages and inductances to vary as a function of current. Finite element method software is used to perform a parametric sweep of direct, quadrature, and field currents to extract the respective flux linkages. This data is used to train a neural network which yields current as a function of flux linkage. The neural network is implemented in a Simulink synchronous generator model and simulation results are compared with a previously developed linear model. Results show that the nonlinear neural network model can more accurately describe the responsiveness and performance of the synchronous generator.
Technical Paper

High Speed Machining of Helicopter Gearcases

2004-09-21
2004-01-2826
High speed machining of aluminum and magnesium helicopter gearcases was experimentally demonstrated to be five times more productive than contemporary conventional commercial practice for suitable operations. Appropriate techniques and performance characteristics are discussed for face milling, endmilling and planetary milling operations. Potential problem areas, such as surface characteristics and machine tool performance requirements are discussed.
Journal Article

The Semantic Web and Space Operations

2011-10-18
2011-01-2506
In this paper, we introduce the use of ontologies to implement the information developed and organized by resource planning tools into standard project management documents covering integrated cost, resource modeling and analysis, and visualization. The basic upper ontology used for NASA Space Operations is explained and the results obtained are discussed. This ontology-centered approach is looking for tighter connections between software, hardware, and systems engineering.
Journal Article

Simulation and Systems Engineering: Lessons Learned

2019-03-19
2019-01-1331
Aerospace projects live a long time. Around the turn of the century, NASA first began to discuss multi-decadal projects with respect to the tools, methods, infrastructure and culture necessary to successfully establish outposts and bases both on the Moon as well as in adjacent space. Pilot projects were completed, capabilities developed and solutions were shared across the Agency. A decade later the Mars discussion was multi-generational with planning milestones 50 years in the future. The 1970’s Requirements Document, or the 1990’s System Model are nowhere near suitable for planning, development, integration and operations of multi-national, highly complex, incredibly expensive development efforts planned to outlast not only the careers of the developers but that of their children as well. Simulation in the different forms has become very important for this multi-decadal projects. The challenge will be to device ways to create formats and views which can stand time.
Technical Paper

Mission Planning for UAV Sensing Tasks in Close Proximity Environments

2007-09-17
2007-01-3846
Unmanned aerial vehicles (UAVs) stand to play a significant role in future sensing and information gathering missions. The scope of these mission scenarios is expanding to include those missions for which the sensor and carrier vehicle will be in close proximity to the surrounding environment, such as in urban operations. Several unique problems related to guidance, navigation and control are introduced that separate these tasks from the existing paradigm for information gathering missions at standoff range. This paper examines the challenges related to autonomous sensor planning missions in these close proximity environments and discusses solution strategies to achieve maximal sensing effectiveness. Specifically, results from vision-based navigation research are discussed and the concept of a geometric sensing effectiveness criterion is introduced and subsequently utilized for motion planning.
Technical Paper

Stiffness of Structures and Drives in Fast Milling Machines

1999-06-05
1999-01-2273
A stiffness requirement for high speed milling machines is determined by examining the stiffness of current generation high speed spindles. The desire for stability against chatter dictates that the stiffness of the machine structure and drives, when reflected to the tool tip exceed the spindle/tool holder/tool stiffness. The stiffness characteristics of a classical serial machine tool designed expressly for high speed milling are shown. Another potential design for high speed machining applications, the parallel kinematic or hexapod structure is also examined. It is found that hexapod structures exhibit lower structural stiffness than can be achieved in serial machines when using the same drive components. Furthermore, the stiffness of the hexapod structure varies widely across the workspace, leading to difficulties in control and limiting the achievable accuracy.
Technical Paper

Development of the Multi-Resolution Modeling Environment through Aircraft Scenarios

2018-10-30
2018-01-1923
Multi-Resolution Modeling (MRM) is one of the key technologies for building complex and large-scale simulations using legacy simulators. MRM has been developed continuously, especially in military fields. MRM plays a crucial role to describe the battlefield and gathering the desired information efficiently by linking various levels of resolution. The simulation models interact across different local and/or distance area networks using the High Level Architecture (HLA) regardless of their operating systems and hardware. The HLA is a standard architecture developed by the US Department of Defense (DoD) and is meant to create interoperability among different types of simulators. Therefore, MRM implementations are very dependent on Interoperability and Composability. This paper summarizes the definition of MRM-related terminology and proposes a basic form of MRM system using Commercial Off-The-Shelf (COTS) simulators and HLA.
Technical Paper

A Heat Pipe Assisted Air-Cooled Rotary Wankel Engine for Improved Durability, Power and Efficiency

2014-09-16
2014-01-2160
In this paper, we address the thermal management issues which limit the lifespan, specific power and overall efficiency of an air-cooled rotary Wankel engine used in Unmanned Air Vehicles (UAVs). Our goal is to eliminate the hot spots and reduce the temperature gradients in the engine housing and side plates by aggressive heat spreading using heat pipes. We demonstrate by simulation that, for a specific power requirement, with heat spreading and more effective heat dissipation, thermal stress and distortion can be significantly reduced, even with air cooling. The maximum temperature drop was substantial, from 231°C to 129°C. The temperature difference (measure of temperature uniformity) decreased by 8.8 times (from 159°C to 18°C) for a typical UAV engine. Our heat spreaders would not change the frontal area of the engine and should have a negligible impact on the installed weight of the propulsion assembly.
Journal Article

Predictive Molding of Precision Glass Optics

2009-04-20
2009-01-1199
Precision glass molding process is an attractive approach to manufacture small precision optical lenses in large volume over traditional manufacturing techniques because of its advantages such as low cost, fast time to market and being environment friendly. In this paper, we present a physics-based computational tool that predicts the final geometry of the glass element after molding process using the finite element method. Deformations of both glass and molds are considered at three different stages: heating, molding, and cooling. A 2D axisymmetric finite element model is developed to model the glass molding process. The proposed modeling technique is more efficient than the all-in-one modeling technique. The molds are assumed to be rigid, except for thermal expansion, at all time and glass treated as a flexible body during the compression. Details on identifying material parameters, modeling assumptions, and simplifications are discussed.
X