Refine Your Search

Topic

Search Results

Technical Paper

Sound Evaluation of Flow-Induced Noise with Simultaneous Measurement of Flow Regimes at TXV Inlet of Automotive Evaporators

2020-04-14
2020-01-1255
In the air conditioning system, flow-induced noise is very disturbing, including the noise generated in the expansion device and the heat exchangers. In the past few decades, most researches related to flow-induced noise focused on the relationship between the flow regimes near the expansion device and the amplitude of flow-induced noise when the measurements are not synched. In this paper, an experimental approach is used to explore the simultaneous relationships between flow-induced noise characteristics and flow regimes at the inlet of TXV of evaporators used in automobiles. A pumped R134a loop with microphones and transparent visualization sections is used to simulate the vapor compression system. Also, the paper evaluates the severity of flow-induced noise from not only the amplitude of noise but also the frequency of noise with a parameter called psychoacoustic annoyance (PA).
Technical Paper

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

2020-04-14
2020-01-0153
Carbon dioxide (CO2 or R744) is a promising next-generation refrigerant for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. This paper presents a simulation model of an integrated internal heat exchanger (IHX) and accumulator (Acc) using the finite volume method. The results are validated by a group of experimental data collected with different transcritical R744 mobile air-conditioner and heat pump (MHP) systems, and the error was within ±10%. The impacts of refrigerant mass flow rate and operating temperatures on the heat transfer rate of the IHX, improvement on refrigeration capacity and the liquid level in the Acc were studied. Results show that the net benefits of IHX are significant in AC mode, while it helps preventing flooding of the compressor in MHP mode.
Technical Paper

Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine using Well-Defined Fuel Properties

2007-04-16
2007-01-0617
Biodiesel fuel can be produced from a wide range of source materials that affect the properties of the fuel. The diesel engine has become a highly tuned power source that is sensitive to these properties. The objectives of this research were to measure and predict the key properties of biodiesel produced from a broad range of source materials to be used as inputs for combustion modeling; and second to compare the results of the model with and without the biodiesel fuel definition. Substantial differences in viscosity, surface tension, density and thermal conductivity were obtained relative to reference diesel fuels and among the different source materials. The combustion model revealed differences in the temperature and emissions of biodiesel when compared to reference diesel fuel.
Technical Paper

Real-Time Modeling of Liquid Cooling Networks in Vehicle Thermal Management Systems

2008-04-14
2008-01-0386
This paper describes a ‘toolbox’ for modeling liquid cooling system networks within vehicle thermal management systems. Components which can be represented include pumps, coolant lines, control valves, heat sources and heat sinks, liquid-to-air and liquid-to-refrigerant heat exchangers, and expansion tanks. Network definition is accomplished through a graphical user interface, allowing system architecture to be easily modified. The elements of the toolbox are physically based, so that the models can be applied before hardware is procured. The component library was coded directly into MATLAB / SIMULINK and is intended for control system development, hardware-in-the-loop (HIL) simulation, and as a system emulator for on-board diagnostics and controls purposes. For HIL simulation and on-board diagnostics and controls, it is imperative that the model run in real-time.
Technical Paper

An Experimental and Analytical Study of the Fatigue Life of Weldments with Longitudinal Attachments

2001-03-05
2001-01-0085
Both the experimental results and the analytical predictions of this study confirm that the poor fatigue performance of weldments with longitudinal attachments is due to poor weld quality which in turn leads to either a cold-lap or a very small weld toe radius. as well as to the combination of a very high 3-D stress concentration, and very high tensile residual stresses. Consequently, a specially designed stress-concentration-reducing part termed “stress diffuser” incorporated in the wrap-around welds at the ends of the longitudinal attachments increased the fatigue strength of longitudinal attachments to equal that of transverse attachments but only when cold-laps were eliminated. The fatigue life predictions made using the a two-stage Initiation-Propagation (IP) Model were in good agreement with the experimental results. Procedures for correcting for the curved shape of the crack path are investigated.
Technical Paper

Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine:Broadband Natural Luminosity Imaging

2002-05-06
2002-01-1631
The detailed mechanisms by which oxygenated diesel fuels reduce engine-out soot emissions are not well understood. The literature contains conflicting results as to whether a fuel's overall oxygen content is the only important parameter in determining its soot-reduction potential, or if oxygenate molecular structure or other variables also play significant roles. To begin to resolve this controversy, experiments were conducted at a 1200-rpm, moderate-load operating condition using a modern-technology, 4-stroke, heavy-duty DI diesel engine with optical access. Images of broadband natural luminosity (i.e., light emission without spectral filtering) from the combustion chamber, coupled with heat-release and efficiency analyses, are presented for three test-fuels. One test-fuel (denoted GE80) was oxygenated with tri-propylene glycol methyl ether; the second (denoted BM88) was oxygenated with di-butyl maleate. The overall oxygen contents of these two fuels were matched at 26% by weight.
Technical Paper

The In-Situ Measurement of the Thermal Diffusivity of Combustion Chamber Deposits in Spark Ignition Engines

1992-02-01
920513
Combustion chamber deposits in spark ignition engines act as thermal insulators and can lead to octane requirement increase. The thermal properties of deposits are not well documented, the reported thermal diffusivity values vary by two orders of magnitude. Two thermal property measurement techniques were compared, the flash and steady illumination laser methods. The steady laser method was more suitable for deposit property measurement. A comparison was made of the thermal properties of deposits grown with a base fuel with the thermal properties of deposits grown with the base fuel doped with reformer bottoms. For the clean fuel the thermal diffusivity ranged from 3.5 to 3.9-7 m2/s, at various locations around the combustion chamber. For the fuel doped with reformer bottoms the thermal diffusivity ranged from 1.1 to 1.9-7 m2/s at different locations within the combustion chamber.
Technical Paper

Refrigerant Charge Imbalance in a Mobile Reversible Air Conditioning-Heat Pump System

2017-03-28
2017-01-0177
This paper presents the study of refrigerant charge imbalance between A/C (cooling) mode and HP (heating) mode of a mobile reversible system. Sensitivities of cooling and heating capacity and energy efficiency with respect to refrigerant charge were investigated. Optimum refrigerant charge level for A/C mode was found to be larger than that for HP mode, primarily due to larger condenser size in A/C mode. Refrigerant charge retention in components at both modes were measured in the lab by quick close valve method. Modeling of charge retention in heat exchangers was compared to experimental measurements. Effect of charge imbalance on oil circulation was also discussed.
Technical Paper

Experimentally Validated Effects of Separation of Liquid and Vapor on Performance of Condenser and System

2017-03-28
2017-01-0162
This paper presents the results of an experimental study to determine the effect of vapor-liquid refrigerant separation in a microchannel condenser of a MAC system. R134a is used as the working fluid. A condenser with separation and a baseline condenser identical on the air side have been tested to evaluate the difference in the performance due to separation. Two categories of experiments have been conducted: the heat exchanger-level test and the system-level test. In the heat exchanger-level test it is found that the separation condenser condenses from 1.6% to 7.4% more mass flow than the baseline at the same inlet and outlet temperature (enthalpy); the separation condenser condenses the same mass flow to a lower temperature than the baseline condenser does. In the system-level test, COP is compared under the same superheat, subcooling and refrigerating capacity. Separation condenser shows up to 6.6% a higher COP than the baseline condenser.
Technical Paper

Study of Biodiesel Combustion in a Constant Volume Chamber with Different Ambient Temperature and Oxygen Concentration

2011-08-30
2011-01-1931
Biodiesel is a widely used biofuel in diesel engines, which is of particular interest as a renewable fuel because it possesses the similar properties as the diesel fuel. The pure soybean biodiesel was tested in an optical constant volume combustion chamber using natural flame luminosity and forward illumination light extinction (FILE) methods to explore the combustion process and soot distribution at various ambient temperatures (800 K and 1000 K) and oxygen concentrations (21%, 16%, 10.5%). Results indicated that, with a lower ambient temperature, the autoignition delay became longer for all three oxygen concentrations and more ambient air was entrained by spray jet and more fuel was burnt by premixed combustion. With less ambient oxygen concentration, the heat release rate showed not only a longer ignition delay but also longer combustion duration.
Technical Paper

Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature with Low Pressure Low GWP Fluid

2018-04-03
2018-01-0071
With market share of electric vehicles continue to grow, there is an increasing demand of mobile heat pump for cabin climate control, as it has much higher energy efficiency when compared to electric heating and helps to cut drive range reduction. One big challenge of heat pump systems is that their heating capacities drop significantly when operating at very low ambient temperature, especially for those with low pressure refrigerants. This paper presents a way to improve low ambient temperature heating performance by using intermediate vapor bypass with the outdoor heat exchanger, which works as an evaporator in heat pump mode. The experimental results show a 35% increase of heating capacity at −20 °C ambient with the improved system as compared to the baseline, and heating performance factor also slightly increased when the system is working at higher ambient temperature to reach the same heating capacity as the baseline.
Technical Paper

Performance Characteristics of a Mobile Heat Pump System at Low Ambient Temperature

2018-04-03
2018-01-0076
The demand for mobile heat pump systems increases with the growing popularity of electric vehicles. One big challenge of such systems using low pressure refrigerant is the substantial drop of heating capacity at low ambient temperature conditions, when heat is most needed. The low suction density associated with low operating pressure in the evaporator is the major reason for the capacity drop. In extremely low ambient temperature, compressor speed may need to be regulated in order to prevent suction pressure going below atmospheric pressure, hence further reducing heat pumping capability. Other factors like pressure drop induced temperature glide and refrigerant maldistribution in the outdoor evaporator also weakens the system ability to absorb heat from ambient air. This paper presents detailed and in-depth analysis of the performance and limiting factors on low ambient temperature operation of a mobile heat pump system using refrigerant R1234yf.
Technical Paper

Measurements of the Evaporation Behavior of the Film of Fuel Blends

2018-04-03
2018-01-0290
The formation of fuel film in the combustion cylinder affects the mixing process of the air and the fuel, and the process of the combustion propagation in engines. Some models of film evaporation have been developed to predict the evaporation behavior of the film, but rarely experimental results have been produced, especially when the temperature is high. In this study, the evaporation behavior of the film of different species of oil and their blends at different temperature are observed. The 45 μL films of isooctane, 1-propanol, 1-butanol, 1-pentanol, and their blends were placed on a quartz glass substrate in the closed temperature-controlled chamber. The shape change of the film during evaporation was monitored by a high-speed camera through the window of the chamber. First, the binary blends film of isooctane and one of the other three oils were evaporated at 30 °C, 50 °C, 70 °C and 90 °C.
Technical Paper

A Field Information System for SSCM

1993-09-01
932422
Site-Specific Crop Management (SSCM) involves use of automated seeders and chemical applicators to make spatially-variable applications to agricultural fields. Soil productivity is spatially variable and thus, SSCM provides an opportunity to reduce total applications of seed and fertilizer without reducing crop yields. Also, more complete crop use of fertilizers with SSCM could reduce the potential for environmental contamination. A key element in SSCM is a Field Information System (FIS) for preparing application maps to control application rates.
Technical Paper

Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a Spark Ignition Engine

1993-03-01
930217
Cylinder head combustion chamber and piston temperatures and heat fluxes were measured in a 2.2 L 4 cylinder spark ignition engine. Measurements for the combustion chamber were made at wide open throttle conditions, 1400 rpm to 5000 rpm at 600 rpm increments, additional measurements were made on the combustion chamber at part throttle conditions at 3200 RPM. Piston temperature and heat flux measurements were made at WOT conditions from 1400 to 3200 RPM in 600 RPM increments. Average combustion chamber surface temperatures ranged from 130 deg. C to 248 deg. C, while peak combustion chamber surface temperatures ranged from 142 deg. C to 258 deg. C for WOT conditions. Peak heat flus at the surface for WOT conditions in the combustion chamber ranged from 1.2 MW/m2to 5.0 MW/m2. Central region heat fluxes were 2.3 to 2.8 times greater than those in the end gas regions of the combustion chamber.
Technical Paper

High Temperature Cyclic Fatigue Damage Modeling of Alumina

1994-03-01
940251
Cyclic loading is not as damaging as static loading of ceramics at high temperatures. Microcrack growth retardation has been established as a mechanism for increasing the durability of ceramics at high temperatures. A combined experimental and theoretical approach provides a mechanistic understanding of the deformation and failure processes in ceramic materials at high temperatures. Results demonstrate that the high temperature behavior of some ceramic material systems are controlled by the behavior of the grain boundary phase whose response is considerably different under static and cyclic loading.
Technical Paper

Analysis of Residual Stresses and Cyclic Deformation for Induction Hardened Components

1995-02-01
950707
Induction hardening of mild steel components often results in significant improvements in the static and cyclic load capability, with comparatively small increases in cost. Members subjected primarily to torsional loading are a relevant subset of the broad range of induction hardened components. Due to the variation of material properties and residual stresses, failures are “initiated” at the traditional geometric locations predicted for homogeneous materials and also at subsurface sites. The introduction of shear based fatigue parameters has necessitated the consideration of the residual stress as a three dimensional quantity, especially when analyzing subsurface failures. Not considering the tensoral nature of the residual stress can lead to serious errors when estimating fatigue life, and for larger magnitude loadings, the residual stress field may relax.
Technical Paper

Ventilated Brake Rotor Air Flow Investigation

1997-02-24
971033
Air flow through the passages of a Chrysler LH platform ventilated brake rotor is measured. Modifications to the production rotor's vent inlet geometry are prototyped and measured in addition to the production rotor. Vent passage air flow is compared to existing correlations. The inlet modifications show significantly improved vent air flow, over the production rotor. The result improvement in heat transfer and rotor cooling is reported. These benefits in performance should be attainable at very low increases in production cost.
Technical Paper

An Investigation of the Feasibility of Refrigerant Charge Loss Detection Using Low Cost Measurements

1997-02-24
970106
The feasibility of automatically detecting refrigerant charge loss in mobile air conditioning (MAC) systems by analyzing inexpensive dynamic measurements was studied. An indicator of the refrigerant inventory of the evaporator was developed. This measure, termed Time to Temperature Turning (TTT), is based on dynamic measurement of the evaporator outlet refrigerant temperature, and correlates strongly with charge level. TTT correlated well with clutch cycling behavior, a metric which is employed in current shop diagnostic practice to indicate refrigerant charge loss. Laboratory data were generated from a factorial experiment design on the following factors: condenser air inlet temperature, condenser air flow rate, evaporator air inlet temperature, compressor speed, and refrigerant charge. Experiments to date were conducted with a dry evaporator.
Technical Paper

Analytical Descriptions of Service Loading Suitable for Fatigue Analysis

1997-04-08
971535
Service loading histories have the same general character for an individual route and the magnitudes vary from driver to driver. Both the magnitude and character of the loading history change from route to route and a linear scaling of one loading history does not characterize the variability of usage over a wide range of operating conditions. In this paper a technique for measuring and extrapolating cumulative exceedance diagrams to quantify the distribution of service loading in a vehicle is described. Monte Carlo simulations are coupled with the local stress strain approach for fatigue to obtain distributions of service loading. Fatigue life estimates based on the original loading histories are compared to those obtained from statistical descriptions of exceedance diagrams.
X