Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Sound Evaluation of Flow-Induced Noise with Simultaneous Measurement of Flow Regimes at TXV Inlet of Automotive Evaporators

2020-04-14
2020-01-1255
In the air conditioning system, flow-induced noise is very disturbing, including the noise generated in the expansion device and the heat exchangers. In the past few decades, most researches related to flow-induced noise focused on the relationship between the flow regimes near the expansion device and the amplitude of flow-induced noise when the measurements are not synched. In this paper, an experimental approach is used to explore the simultaneous relationships between flow-induced noise characteristics and flow regimes at the inlet of TXV of evaporators used in automobiles. A pumped R134a loop with microphones and transparent visualization sections is used to simulate the vapor compression system. Also, the paper evaluates the severity of flow-induced noise from not only the amplitude of noise but also the frequency of noise with a parameter called psychoacoustic annoyance (PA).
Technical Paper

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

2020-04-14
2020-01-0153
Carbon dioxide (CO2 or R744) is a promising next-generation refrigerant for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. This paper presents a simulation model of an integrated internal heat exchanger (IHX) and accumulator (Acc) using the finite volume method. The results are validated by a group of experimental data collected with different transcritical R744 mobile air-conditioner and heat pump (MHP) systems, and the error was within ±10%. The impacts of refrigerant mass flow rate and operating temperatures on the heat transfer rate of the IHX, improvement on refrigeration capacity and the liquid level in the Acc were studied. Results show that the net benefits of IHX are significant in AC mode, while it helps preventing flooding of the compressor in MHP mode.
Technical Paper

In-Cylinder Measurements of Liquid Fuel During the Intake Stroke of a Port-Injected Spark Ignition Engine

1997-10-01
972945
The presence and distribution of liquid fuel within an engine cylinder at cold start may adversely affect the hydrocarbon emissions from port-injected, spark ignition engines. Therefore, high speed videos of the liquid fuel entry into the cylinder of an optical engine were recorded in order to assess the effect of various engine operating parameters on the amount of liquid fuel inducted into the cylinder, the sizes of liquid drops present and the distribution of the fuel within the cylinder. A 2.5L, V-6, port-injected, spark ignition engine was modified so that optical access is available throughout the entire volume of one of the cylinders. A fused silica cylinder is sandwiched between the separated block and head of the engine and a “Bowditch-type” piston extension is mounted to the production piston. The Bowditch piston has a fused silica crown so that visualization is possible through the top of the piston as well as through the transparent cylinder.
Technical Paper

Real-Time Modeling of Liquid Cooling Networks in Vehicle Thermal Management Systems

2008-04-14
2008-01-0386
This paper describes a ‘toolbox’ for modeling liquid cooling system networks within vehicle thermal management systems. Components which can be represented include pumps, coolant lines, control valves, heat sources and heat sinks, liquid-to-air and liquid-to-refrigerant heat exchangers, and expansion tanks. Network definition is accomplished through a graphical user interface, allowing system architecture to be easily modified. The elements of the toolbox are physically based, so that the models can be applied before hardware is procured. The component library was coded directly into MATLAB / SIMULINK and is intended for control system development, hardware-in-the-loop (HIL) simulation, and as a system emulator for on-board diagnostics and controls purposes. For HIL simulation and on-board diagnostics and controls, it is imperative that the model run in real-time.
Technical Paper

The In-Situ Measurement of the Thermal Diffusivity of Combustion Chamber Deposits in Spark Ignition Engines

1992-02-01
920513
Combustion chamber deposits in spark ignition engines act as thermal insulators and can lead to octane requirement increase. The thermal properties of deposits are not well documented, the reported thermal diffusivity values vary by two orders of magnitude. Two thermal property measurement techniques were compared, the flash and steady illumination laser methods. The steady laser method was more suitable for deposit property measurement. A comparison was made of the thermal properties of deposits grown with a base fuel with the thermal properties of deposits grown with the base fuel doped with reformer bottoms. For the clean fuel the thermal diffusivity ranged from 3.5 to 3.9-7 m2/s, at various locations around the combustion chamber. For the fuel doped with reformer bottoms the thermal diffusivity ranged from 1.1 to 1.9-7 m2/s at different locations within the combustion chamber.
Technical Paper

Refrigerant Charge Imbalance in a Mobile Reversible Air Conditioning-Heat Pump System

2017-03-28
2017-01-0177
This paper presents the study of refrigerant charge imbalance between A/C (cooling) mode and HP (heating) mode of a mobile reversible system. Sensitivities of cooling and heating capacity and energy efficiency with respect to refrigerant charge were investigated. Optimum refrigerant charge level for A/C mode was found to be larger than that for HP mode, primarily due to larger condenser size in A/C mode. Refrigerant charge retention in components at both modes were measured in the lab by quick close valve method. Modeling of charge retention in heat exchangers was compared to experimental measurements. Effect of charge imbalance on oil circulation was also discussed.
Technical Paper

Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends

2017-10-08
2017-01-2328
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
Technical Paper

Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature with Low Pressure Low GWP Fluid

2018-04-03
2018-01-0071
With market share of electric vehicles continue to grow, there is an increasing demand of mobile heat pump for cabin climate control, as it has much higher energy efficiency when compared to electric heating and helps to cut drive range reduction. One big challenge of heat pump systems is that their heating capacities drop significantly when operating at very low ambient temperature, especially for those with low pressure refrigerants. This paper presents a way to improve low ambient temperature heating performance by using intermediate vapor bypass with the outdoor heat exchanger, which works as an evaporator in heat pump mode. The experimental results show a 35% increase of heating capacity at −20 °C ambient with the improved system as compared to the baseline, and heating performance factor also slightly increased when the system is working at higher ambient temperature to reach the same heating capacity as the baseline.
Technical Paper

Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a Spark Ignition Engine

1993-03-01
930217
Cylinder head combustion chamber and piston temperatures and heat fluxes were measured in a 2.2 L 4 cylinder spark ignition engine. Measurements for the combustion chamber were made at wide open throttle conditions, 1400 rpm to 5000 rpm at 600 rpm increments, additional measurements were made on the combustion chamber at part throttle conditions at 3200 RPM. Piston temperature and heat flux measurements were made at WOT conditions from 1400 to 3200 RPM in 600 RPM increments. Average combustion chamber surface temperatures ranged from 130 deg. C to 248 deg. C, while peak combustion chamber surface temperatures ranged from 142 deg. C to 258 deg. C for WOT conditions. Peak heat flus at the surface for WOT conditions in the combustion chamber ranged from 1.2 MW/m2to 5.0 MW/m2. Central region heat fluxes were 2.3 to 2.8 times greater than those in the end gas regions of the combustion chamber.
Technical Paper

Modeling of Air Fuel Mixing in a Stratified Gasoline Direct Injection Engine Using Multicomponent Fuel Representation

2003-03-03
2003-01-0067
This paper describes a numerical study on air/fuel preparation process in a direct-injected spark-ignition engine under partial load stratified conditions. The fuel is represented as a mixture of four components with a distillation curve similar to that of actual gasoline, and its vaporization processes are simulated by two recently formulated multicomponent vaporization models for droplet and film, respectively. The models include major mechanisms such as non-ideal behavior in high-pressure environments, preferential vaporization, internal circulation, surface regression, and finite diffusion in the liquid phase. A spray/wall impingement model with the effect of surface roughness is used to represent the interaction between the fuel spray and the solid wall. Computations of single droplet and film on a flat plate were first performed to study the impact of fuel representation and vaporization model on the droplet and film vaporization processes.
Technical Paper

Ventilated Brake Rotor Air Flow Investigation

1997-02-24
971033
Air flow through the passages of a Chrysler LH platform ventilated brake rotor is measured. Modifications to the production rotor's vent inlet geometry are prototyped and measured in addition to the production rotor. Vent passage air flow is compared to existing correlations. The inlet modifications show significantly improved vent air flow, over the production rotor. The result improvement in heat transfer and rotor cooling is reported. These benefits in performance should be attainable at very low increases in production cost.
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

2005-04-11
2005-01-0209
A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

A Sensor for Estimating the Liquid Mass Fraction of the Refrigerant Exiting an Evaporator

2000-03-06
2000-01-0976
A traditional method of controlling evaporator superheat in a vapor compression air conditioning system is the thermostatic expansion valve (TXV). Such systems are often used in automotive applications. The TXV depends on superheat to adjust the valve opening. Unfortunately, any amount of superheat causes that evaporator to operate at reduced capacity due to dramatically lower heat transfer coefficients in the superheated region. In addition, oil circulation back to the compressor is impeded. The cold lubricant almost devoid of dissolved refrigerant is quite viscous and clings to the evaporator walls. A system that could control an air conditioner to operate with no superheat would either decrease the size of its existing evaporator while maintaining the same capacity, or potentially increase its capacity with its original evaporator. Also, oil circulation back to the compressor would be improved.
Technical Paper

Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine

2000-03-06
2000-01-0243
A 2.5L, V-6, port-injected, spark-ignition engine was modified for optical access by separating the head from the block and installing a Bowditch extended piston with a fused-silica top and a fused-silica liner in one of the cylinders. Two heads were employed in the study. One produced swirl and permitted modulation of the swirl level, and another produced a tumbling flow in the cylinder. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. The exciplex fluorescence technique was calibrated in a separate cell where careful control of mixture composition, temperature and pressure was possible. The results show that large-scale motion induced during intake is critical for good mixing during the intake and compression strokes.
Technical Paper

Numerical Simulation of Two-Phase Flow in the Second Header of MAC Condenser

2019-04-02
2019-01-1065
Phase separation circuiting have been proved in the past to effectively improve the performance of mobile air conditioning (MAC) condensers. In the vertical second header of the condenser, liquid separates from vapor mainly due to gravity, leaving vapor-rich flow with higher heat transfer coefficient to go into the upper passes. The condenser effectiveness is improved in this way. However, separation is usually not perfect, expressed through the separation efficiency (ηl and ηv). This paper presents the numerical study of phase separation phenomena in the second header. The Euler-Euler method of Computational Fluid Dynamics (CFD) is used. Simulations are conducted for two-phase refrigerant R-134a for MAC application. Inlet mass flow rate is simulated at values of 16 g∙s-1, 20 g∙s-1, and 30 g∙s-1 for 21 inlet microchannel tubes, which is the same 1st-pass tube number as of a real separation condenser. Corresponding mass fluxes are 166 kg∙m-2∙s-1, 207 kg∙m-2∙s-1, and 311 kg∙m-2∙s-1.
X