Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Sound Evaluation of Flow-Induced Noise with Simultaneous Measurement of Flow Regimes at TXV Inlet of Automotive Evaporators

2020-04-14
2020-01-1255
In the air conditioning system, flow-induced noise is very disturbing, including the noise generated in the expansion device and the heat exchangers. In the past few decades, most researches related to flow-induced noise focused on the relationship between the flow regimes near the expansion device and the amplitude of flow-induced noise when the measurements are not synched. In this paper, an experimental approach is used to explore the simultaneous relationships between flow-induced noise characteristics and flow regimes at the inlet of TXV of evaporators used in automobiles. A pumped R134a loop with microphones and transparent visualization sections is used to simulate the vapor compression system. Also, the paper evaluates the severity of flow-induced noise from not only the amplitude of noise but also the frequency of noise with a parameter called psychoacoustic annoyance (PA).
Technical Paper

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

2020-04-14
2020-01-0153
Carbon dioxide (CO2 or R744) is a promising next-generation refrigerant for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. This paper presents a simulation model of an integrated internal heat exchanger (IHX) and accumulator (Acc) using the finite volume method. The results are validated by a group of experimental data collected with different transcritical R744 mobile air-conditioner and heat pump (MHP) systems, and the error was within ±10%. The impacts of refrigerant mass flow rate and operating temperatures on the heat transfer rate of the IHX, improvement on refrigeration capacity and the liquid level in the Acc were studied. Results show that the net benefits of IHX are significant in AC mode, while it helps preventing flooding of the compressor in MHP mode.
Technical Paper

Spray and Combustion Visualization in an Optical HSDI Diesel Engine Operated in Low-Temperature Combustion Mode with Bio-diesel and Diesel Fuels

2008-04-14
2008-01-1390
An optically accessible single-cylinder high-speed direct-injection (HSDI) Diesel engine equipped with a Bosch common rail injection system was used to study the spray and combustion processes for European low sulfur diesel, bio-diesel, and their blends at different blending ratio. Influences of injection timing and fuel type on liquid fuel evolution and combustion characteristics were investigated under similar loads. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation for all test fuels.
Technical Paper

Real-Time Modeling of Liquid Cooling Networks in Vehicle Thermal Management Systems

2008-04-14
2008-01-0386
This paper describes a ‘toolbox’ for modeling liquid cooling system networks within vehicle thermal management systems. Components which can be represented include pumps, coolant lines, control valves, heat sources and heat sinks, liquid-to-air and liquid-to-refrigerant heat exchangers, and expansion tanks. Network definition is accomplished through a graphical user interface, allowing system architecture to be easily modified. The elements of the toolbox are physically based, so that the models can be applied before hardware is procured. The component library was coded directly into MATLAB / SIMULINK and is intended for control system development, hardware-in-the-loop (HIL) simulation, and as a system emulator for on-board diagnostics and controls purposes. For HIL simulation and on-board diagnostics and controls, it is imperative that the model run in real-time.
Technical Paper

Atomization Characteristics of Multi-component Bio-fuel Systems under Micro-explosion Conditions

2008-04-14
2008-01-0937
A numerical study of micro-explosion in multi-component droplets is presented. The homogeneous nucleation theory is used in describing the bubble generation process. A modified Rayleigh equation is then used to calculate the bubble growth rate. The breakup criterion is then determined by applying a linear stability analysis on the bubble-droplet system. After the explosion/breakup, the atomization characteristics, including Sauter mean radius and averaged velocity of the secondary droplets, are calculated from conservation equations. Micro-explosion can be enhanced by introducing biodiesel into the fuel blends of ethanol and tetradecane. Micro-explosion is more likely to occur at high ambient pressure. However, increasing the ambient temperature does not have a significant effect on micro-explosion. There exists an optimal composition in the liquid mixture for micro-explosion.
Technical Paper

Refrigerant Charge Imbalance in a Mobile Reversible Air Conditioning-Heat Pump System

2017-03-28
2017-01-0177
This paper presents the study of refrigerant charge imbalance between A/C (cooling) mode and HP (heating) mode of a mobile reversible system. Sensitivities of cooling and heating capacity and energy efficiency with respect to refrigerant charge were investigated. Optimum refrigerant charge level for A/C mode was found to be larger than that for HP mode, primarily due to larger condenser size in A/C mode. Refrigerant charge retention in components at both modes were measured in the lab by quick close valve method. Modeling of charge retention in heat exchangers was compared to experimental measurements. Effect of charge imbalance on oil circulation was also discussed.
Technical Paper

Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature with Low Pressure Low GWP Fluid

2018-04-03
2018-01-0071
With market share of electric vehicles continue to grow, there is an increasing demand of mobile heat pump for cabin climate control, as it has much higher energy efficiency when compared to electric heating and helps to cut drive range reduction. One big challenge of heat pump systems is that their heating capacities drop significantly when operating at very low ambient temperature, especially for those with low pressure refrigerants. This paper presents a way to improve low ambient temperature heating performance by using intermediate vapor bypass with the outdoor heat exchanger, which works as an evaporator in heat pump mode. The experimental results show a 35% increase of heating capacity at −20 °C ambient with the improved system as compared to the baseline, and heating performance factor also slightly increased when the system is working at higher ambient temperature to reach the same heating capacity as the baseline.
Technical Paper

Performance Characteristics of a Mobile Heat Pump System at Low Ambient Temperature

2018-04-03
2018-01-0076
The demand for mobile heat pump systems increases with the growing popularity of electric vehicles. One big challenge of such systems using low pressure refrigerant is the substantial drop of heating capacity at low ambient temperature conditions, when heat is most needed. The low suction density associated with low operating pressure in the evaporator is the major reason for the capacity drop. In extremely low ambient temperature, compressor speed may need to be regulated in order to prevent suction pressure going below atmospheric pressure, hence further reducing heat pumping capability. Other factors like pressure drop induced temperature glide and refrigerant maldistribution in the outdoor evaporator also weakens the system ability to absorb heat from ambient air. This paper presents detailed and in-depth analysis of the performance and limiting factors on low ambient temperature operation of a mobile heat pump system using refrigerant R1234yf.
Technical Paper

Measurements of the Evaporation Behavior of the Film of Fuel Blends

2018-04-03
2018-01-0290
The formation of fuel film in the combustion cylinder affects the mixing process of the air and the fuel, and the process of the combustion propagation in engines. Some models of film evaporation have been developed to predict the evaporation behavior of the film, but rarely experimental results have been produced, especially when the temperature is high. In this study, the evaporation behavior of the film of different species of oil and their blends at different temperature are observed. The 45 μL films of isooctane, 1-propanol, 1-butanol, 1-pentanol, and their blends were placed on a quartz glass substrate in the closed temperature-controlled chamber. The shape change of the film during evaporation was monitored by a high-speed camera through the window of the chamber. First, the binary blends film of isooctane and one of the other three oils were evaporated at 30 °C, 50 °C, 70 °C and 90 °C.
Technical Paper

Modeling of Quasi-1D Multi-Component Fuel Droplet Vaporization using Discrete Approach with Experimental Validation

2018-04-03
2018-01-0287
An efficient multi-component fuel droplet vaporization model has been developed in this work using discrete approach. The precise modeling of droplet vaporization process is divided into two parts: vapor-phase and liquid-phase sub-models. Temporal evolution of flow inside the droplet is considered to describe the transient behavior introduced by the slow diffusion process. In order to account for the internal circulation motion, surface regression and finite diffusion without actually resolving the spatial governing equations within the liquid phase, a set of ordinary differential equations is applied to describe the evolution of the non-uniform distributions of universal diffusional variables, i.e. temperature and species mass fraction. The differences between the droplet surface and bulk mean states are modeled by constructing a quasi-1D frame; the effect of the internal circulations is taken into consideration by using the effective diffusivity rather than physical diffusivity.
Technical Paper

Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a Spark Ignition Engine

1993-03-01
930217
Cylinder head combustion chamber and piston temperatures and heat fluxes were measured in a 2.2 L 4 cylinder spark ignition engine. Measurements for the combustion chamber were made at wide open throttle conditions, 1400 rpm to 5000 rpm at 600 rpm increments, additional measurements were made on the combustion chamber at part throttle conditions at 3200 RPM. Piston temperature and heat flux measurements were made at WOT conditions from 1400 to 3200 RPM in 600 RPM increments. Average combustion chamber surface temperatures ranged from 130 deg. C to 248 deg. C, while peak combustion chamber surface temperatures ranged from 142 deg. C to 258 deg. C for WOT conditions. Peak heat flus at the surface for WOT conditions in the combustion chamber ranged from 1.2 MW/m2to 5.0 MW/m2. Central region heat fluxes were 2.3 to 2.8 times greater than those in the end gas regions of the combustion chamber.
Technical Paper

Ventilated Brake Rotor Air Flow Investigation

1997-02-24
971033
Air flow through the passages of a Chrysler LH platform ventilated brake rotor is measured. Modifications to the production rotor's vent inlet geometry are prototyped and measured in addition to the production rotor. Vent passage air flow is compared to existing correlations. The inlet modifications show significantly improved vent air flow, over the production rotor. The result improvement in heat transfer and rotor cooling is reported. These benefits in performance should be attainable at very low increases in production cost.
Technical Paper

Improving Energy Efficiency in Automotive Vapor Compression Cycles through Advanced Control Design

2006-04-03
2006-01-0267
This paper presents an experimental analysis of the performance of various control strategies applied to automotive air conditioning systems. A comparison of the performance of a thermal expansion valve (TEV) and an electronic expansion valve (EEV) over a vehicle drive cycle is presented. Improved superheat regulation and minor efficiency improvements are shown for the EEV control strategies. The efficiency benefits of continuous versus cycled compressor operation are presented, and a discussion of significant improvements in energy efficiency using compressor control is provided. Dual PID loops are shown to control evaporator outlet pressure while regulating superheat. The introduction of a static decoupler is shown to improve the performance of the dual PID loop controller. These control strategies allow for system capacity control, enabling continuous operation and achieving significant energy efficiency improvements.
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

2005-04-11
2005-01-0209
A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

Cylinder Pressure Data Acquisition and Heat Release Analysis on a Personal Computer

1986-02-01
860029
The availability and low price of personal computers with suitable interface equipment has made it practical to use such a system for cylinder pressure data acquisition. With this objective, procedures have been developed to measure and record cylinder pressure on an individual crank angle basis and obtain an average cylinder pressure trace using an Apple II Plus personal computer. These procedures as well as methods for checking the quality of cylinder pressure data are described. A simplified heat release analysis technique for an approximate first look at the data quality is presented. Comparisons are made between the result of this analysis, the Krieger-Borman heat release analysis which uses complete chemical equilibrium. The comparison is made to show the suitability of the simplified analysis in judging the quality of the pressure data.
Technical Paper

A Sensor for Estimating the Liquid Mass Fraction of the Refrigerant Exiting an Evaporator

2000-03-06
2000-01-0976
A traditional method of controlling evaporator superheat in a vapor compression air conditioning system is the thermostatic expansion valve (TXV). Such systems are often used in automotive applications. The TXV depends on superheat to adjust the valve opening. Unfortunately, any amount of superheat causes that evaporator to operate at reduced capacity due to dramatically lower heat transfer coefficients in the superheated region. In addition, oil circulation back to the compressor is impeded. The cold lubricant almost devoid of dissolved refrigerant is quite viscous and clings to the evaporator walls. A system that could control an air conditioner to operate with no superheat would either decrease the size of its existing evaporator while maintaining the same capacity, or potentially increase its capacity with its original evaporator. Also, oil circulation back to the compressor would be improved.
Technical Paper

Methods for Detection of Lubrication Failure Applied to a Swashplate Compressor

2000-03-06
2000-01-0974
Understanding lubrication failures at the shoe/swashplate contact of automotive swashplate compressors will greatly enhance the reliability of the air conditioning system. Maintaining proper lubrication is not always possible during transient conditions. Therefore, a method for detection of lubricant loss is of great interest to the automotive industry. Three methods for detecting lubrication loss were examined: contact resistance, acoustic emission, and dynamic pressure oscillations. A mobile air conditioning test stand capable of recording many system parameters was used. Oil return to the compressor was monitored using an oil separator and a refrigerant/oil concentration sensor. Data were taken during steady oil return rates and after oil shut off. The electrical contact resistance between the shoe and swashplate was used to indicate changes in the lubrication conditions at this critical interface. Measurements were taken at two oil return rates during steady oil return tests.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

Numerical Simulation of Two-Phase Flow in the Second Header of MAC Condenser

2019-04-02
2019-01-1065
Phase separation circuiting have been proved in the past to effectively improve the performance of mobile air conditioning (MAC) condensers. In the vertical second header of the condenser, liquid separates from vapor mainly due to gravity, leaving vapor-rich flow with higher heat transfer coefficient to go into the upper passes. The condenser effectiveness is improved in this way. However, separation is usually not perfect, expressed through the separation efficiency (ηl and ηv). This paper presents the numerical study of phase separation phenomena in the second header. The Euler-Euler method of Computational Fluid Dynamics (CFD) is used. Simulations are conducted for two-phase refrigerant R-134a for MAC application. Inlet mass flow rate is simulated at values of 16 g∙s-1, 20 g∙s-1, and 30 g∙s-1 for 21 inlet microchannel tubes, which is the same 1st-pass tube number as of a real separation condenser. Corresponding mass fluxes are 166 kg∙m-2∙s-1, 207 kg∙m-2∙s-1, and 311 kg∙m-2∙s-1.
X