Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Incorporating Advanced Controls, Displays and other Smart Elements into Space Suit Design

2009-07-12
2009-01-2472
The MX-2 neutral buoyancy space suit analogue has been designed and developed at the University of Maryland to facilitate analysis of space suit components and assessment of the benefits of advanced space suit technologies, The MX-2 replicates the salient features of microgravity pressure suits, including the induced joint torques, visual, auditory and thermal environments, and microgravity through the use of neutral buoyancy simulation. In this paper, design upgrades and recent operations of the suit are outlined, including many experiments and tests of advanced space suit technologies, This paper focuses on the work done using the MX-2 to implement and investigate various advanced controls and displays within the suit, to enhance crewmember situational awareness and effectiveness, and enable human-robotic interaction.
Journal Article

A New Computational Tool for Automotive Cabin Air Temperature Simulation

2013-04-08
2013-01-0868
The thermal comfort inside automotive cabin has been extensively studied for decades. Traditional CFD models provide accurate simulation results of the air temperature distributions inside cabins but at a relatively high computation cost. In order to reduce the computational cost while still providing reasonable accuracy in simulating the air temperature profile inside a mid-sized sedan cabin, this paper introduces a new simulation tool that utilizes a proper orthogonal decomposition (POD) method. The POD method, an interpolation technique, requires only one set of multiple CFD simulations to produce a set of “snapshots”. Later, any simulations that require CFD runs to solve algorithm equation sets can be simplified by using interpolation between the snapshots provided that the geometry of the cabin keeps the same. As a result, the computation time can be reduced to only a few minutes.
Technical Paper

An Experimental Investigation of Passenger Car Tire Properties at High Slip and Camber Angles

1991-02-01
910233
A newly designed and built Mobile Tire Testing Machine (MTTM) is described that has features for large and continuously variable camber and steering angles with minimum tire scrub. This equipment was used to examine tire properties for six passenger car tires. Of special interest were the tire characteristics at combinations of high slip and camber angle. It was found that camber stiffness decreases with increasing slip angle when the slip and camber angles are both positive, and at limit conditions in slip angle, cambering a tire has little effect on the lateral side force produced. When the slip angle is negative, and the camber angle is positive, preliminary data shows that a greater lateral force is produced when compared to operating at limit conditions in slip angle alone.
Technical Paper

The Pride of Maryland - A Solar Powered Car for GM Sunraycer USA

1991-02-01
910623
The Pride of Maryland is a single seat solar powered trans-continental race car designed and built by engineering students at the University of Maryland. The car competed in G.M. Sunrayce USA, placing third, and has gone on to compete in the World Solar Challenge. This paper outlines the three general areas of design and development for the solar vehicle: aerodynamic, electrical, and mechanical. An exercise in high efficiency, the Pride of Maryland has been extremely successful as both a race car and as an educational tool for training student engineers in “real world” problems.
Journal Article

Measurement of Smoke Particle Size under Low-Gravity Conditions

2008-06-29
2008-01-2089
Smoke detection experiments were conducted in the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) during Expedition 15 in an experiment entitled Smoke Aerosol Measurement Experiment (SAME). The preliminary results from these experiments are presented. In order to simulate detection of a prefire overheated-material event, samples of five different materials were heated to temperatures below the ignition point. The smoke generation conditions were controlled to provide repeatable sample surface temperatures and air flow conditions. The smoke properties were measured using particulate aerosol diagnostics that measure different moments of the size distribution. These statistics were combined to determine the count mean diameter which can be used to describe the overall smoke distribution.
Technical Paper

Smoke Particle Sizes in Low-Gravity and Implications for Spacecraft Smoke Detector Design

2009-07-12
2009-01-2468
This paper presents results from a smoke detection experiment entitled Smoke Aerosol Measurement Experiment (SAME) which was conducted in the Microgravity Science Glovebox on the International Space Station (ISS) during Expedition 15. Five different materials representative of those found in spacecraft were pyrolyzed at temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow conditions. The sample materials were Teflon®, Kapton®, cellulose, silicone rubber and dibutylphthalate. The transport time from the smoke source to the detector was simulated by holding the smoke in an aging chamber for times ranging from 10 to1800 seconds. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis.
Technical Paper

2000 University of Maryland FutureTruck Design Description

2001-03-05
2001-01-0681
The University of Maryland team converted a model year 2000 Chevrolet Suburban to an ethanol-fueled hybrid-electric vehicle (HEV) and tied for first place overall in the 2000 FutureTruck competition. Competition goals include a two-thirds reduction of greenhouse gas (GHG) emissions, a reduction of exhaust emissions to meet California ultra-low emissions vehicle (ULEV) Tier II standards, and an increase in fuel economy. These goals must be met without compromising the performance, amenities, safety, or ease of manufacture of the stock Suburban. The University of Maryland FutureTruck, Proteus, addresses the competition goals with a powertrain consisting of a General Motors 3.8-L V6 engine, a 75-kW (100 hp) SatCon electric motor, and a 336-V battery pack. Additionally, Proteus incorporates several emissions-reducing and energy-saving modifications; an advanced control strategy that is implemented through use of an on-board computer and an innovative hybrid-electric drive train.
Technical Paper

Towards Optimization of Automotive Waste Heat Recovery Using Thermoelectrics

2001-03-05
2001-01-1021
The potential for thermoelectric power generation via waste heat recovery onboard automobiles to displace alternators and/or provide additional charging to a hybrid vehicle battery pack has increased with recent advances in thermoelectric materials processing. A preliminary design/modeling study was performed to optimize waste heat recovery for power generation using a modified radiator incorporating thermoelectric modules. The optimization incorporates not only thermoelectric performance but also critical systems issues such as accessory power consumption, vehicle drag, and added system weight. Results indicate the effectiveness of the thermoelectric module is extremely sensitive to ambient heat rejection and to the operating temperature range of the thermoelectric device.
Technical Paper

Utilization Life of Electronic Systems - Aging Avionics Usable Life and Wear-Out Issues

2002-11-05
2002-01-3013
How a system ages is central to the assessment of the effective utilization life of the system. Utilization life represents more than estimating the remaining life in an aged system, it is determining how to optimally plan a system's future management and future use to minimize the life cycle cost incurred. The consideration of utilization life of a system includes the physics of aging, damage accumulation techniques, mitigation of aging, qualified use of aged parts for spare replenishment, prognostics, and quantification of cost avoidance. Any approach to evaluating utilization life depends on a making an effective evaluation of the reliability, durability and safety of the system. Traditional Mean Time Between Failure (MTBF) metrics that assume a constant failure rate are likely to be less useful in the evaluation and practical implementation of utilization life concepts than Failure Free Operating Period (FFOP).
Technical Paper

The Excite - The University of Maryland's Pre - Transmission Parallel Hybrid Ford Explorer

2003-03-03
2003-01-1266
The University of Maryland FutureTruck Team has redesigned a 2002 Ford Explorer to function as a charge-sustaining parallel hybrid electric vehicle for the 2002-2003 FutureTruck competition. Dubbed the Excite, it is powered by a dedicated E85 3.0L V6 engine coupled to a 21.6 kW peak (10kW continuous), electric motor using a 144V NiMH battery pack. The philosophy behind the UMD plan is to use a smaller, lightweight, dedicated E85 engine in parallel with an electric motor to provide starting and mild assist capabilities. The engine provides similar power to the stock 4.0 L Explorer engine and the electric motor functions as a starter, an alternator, and assists the engine during high power demands. The combination of the two systems provides the Excite with engine-off-at-idle capability, increased efficiency and fuel economy, and decreased emissions while maintaining the utility of a stock SUV.
Technical Paper

Morphing Upper Torso: A Novel Concept in EVA Suit Design

2006-07-17
2006-01-2142
The University of Maryland Space Systems Laboratory and ILC Dover LP have developed a novel concept: a soft pressure garment that can be dynamically reconfigured to tailor its shape properties to the wearer and the desired task set. This underlying concept has been applied to the upper torso of a rear entry suit, in which the helmet ring, waist ring and two shoulder rings make up a system of four interconnected parallel manipulators with tensile links. This configuration allows the dynamic control of both the position and orientation of each of the four rings, enabling modification of critical sizing dimensions such as the inter-scye distance, as well as task-specific orientations such as helmet, scye and waist bearing angles. Half-scale and full-scale experimental models as well as an analytical inverse kinematics model were used to examine the interconnectedness of the plates, the role of external forces generated by pressurized fabric, and the controllability of the system.
Technical Paper

The Ranger Telerobotic Shuttle Experiment: Implications for Operational EVA/Robotic Cooperation

2000-07-10
2000-01-2359
The Ranger Telerobotic Shuttle Experiment (RTSX) is a Space Shuttle-based flight experiment to demonstrate key telerobotic technologies for servicing assets in Earth orbit. The flight system will be teleoperated from onboard the Space Shuttle and from a ground control station at the NASA Johnson Space Center. The robot, along with supporting equipment and task elements, will be located in the Shuttle payload bay. A number of relevant servicing operations will be performed-including extravehicular activity (EVA) worksite setup, orbital replaceable unit (ORU) exchange, and other dexterous tasks. The program is underway toward an anticipated launch date in CY2002. This paper gives an overview of the RTSX mission, and describes several follow-on mission scenarios involving cooperative Ranger and EVA activities.
Technical Paper

Effect of Pressure and Velocity Distribution on Propane and Air Mixing Under Reacting and Non-Reacting Conditions

1999-08-02
1999-01-2604
A new model of gaseous fuel-air mixing that is based on the ideal gas law and the equation of continuity is applied to propane-air mixtures. The local degree of mixing and the rate of mixing are calculated using the mass fraction of fuel measured within an infinitesimal fluid element and the time rate of this mass fraction, respectively. According to the model, mixing is promoted by pressure, temperature and velocity gradients. High initial pressure reduces mixing caused by pressure gradients. Results presented here provide the isolated effects of pressure and velocity gradients on mixing. These results facilitate the development of high intensity and high efficiency combustors with special focus on reducing pollutants emission.
Technical Paper

A 50 Wh Open Core High-Speed Flywheel

1999-08-02
1999-01-2615
In low earth orbit satellite applications, spacecraft power is provided by photovoltaic cells and batteries. Unfortunately, use of batteries present difficulties due to their poor energy density, limited cycle lifetimes, reliability problems, and the difficulty in measuring the state of charge. Flywheel energy storage offers a viable alternative to overcome some of the limitations presented by batteries. FARE, Inc. has built a 50 Wh flywheel energy storage system. This system, called the Open Core Flywheel, is intended to be a prototype energy storage device for low earth orbit satellite applications. To date, the Open Core Flywheel has achieved a rotational speed of 26 krpm under digital control.
Technical Paper

Effect of Sauter Mean Diameter on the Combustion Related Parameters in a Large-Bore Marine Diesel Engine

1999-03-01
1999-01-0224
A mathematical model of combustion process in a diesel engine has been developed according to the theory of the chain reactions for the higher hydrocarbon compounds. The instantaneous rates of fuel vaporization and combustion are defined by the current values of temperature, pressure, concentration of fuel vapors, overall diffusion rate, fuel injection rate, and mean fuel droplet size in terms of the SMD. Numerical experiments have been carried out for investigating the interdependencies between various combustion-related parameters. Specifically, the effect of fuel droplet size (in terms of SMD) on the subsequent combustion parameters, such as, pressure, temperature, thermodynamic properties of air/gas mixture, heat transfer, fuel vaporization, combustion rate, current A/F ratio, gas mixture composition have been investigating. In addition, the integral indicator parameters of the engine, such as the mean indicated pressure, peak pressure, compression pressure have been analyzed.
Technical Paper

Systematic Modelling and Design of a Battery Pack for Formula Electric Vehicles

2021-04-06
2021-01-0762
This manuscript presents a systematic approach for the design and development of a 403 V, 7 kWh battery pack for a Formula SAE student racing electric car. The pack is made up of 6 individual segments which are connected in series. Each segment has a maximum energy of 1.17 kWh and is made up of 16 arrays connected in series. Each array holds 8 Lithium-ion batteries which are connected in parallel. The overall design of the battery pack is in full compliance with the Formula SAE rules. The manuscript presents the calculation procedure and battery sizing for the power demand of a typical Formula SAE student racing electric car using vehicle dynamics equations. The entire electric traction system is modelled in Matlab/Simulink. The paper also explains the development process of the 7 kWh battery pack and highlights important design considerations, such as busbar sizing.
X