Refine Your Search

Topic

Author

Search Results

Technical Paper

Minimization of Electric Heating of the Traction Induction Machine Rotor

2020-04-14
2020-01-0562
The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance.
Journal Article

The Influence of Road Surface Properties on Vehicle Suspension Parameters Optimized for Ride - Design Trends for Global Markets

2012-04-16
2012-01-0521
Suspension design is influenced by many factors, especially by vehicle dynamics performance in ride, handling and durability. In the global automotive industry it is common to “customize” or tune suspension parameters so that a vehicle is more acceptable to a different customer base and in a different driving environment. This paper seeks to objectively quantify certain aspects of tuning via ride optimization, taking account of market differences in road surface spectral properties and loading conditions. A computationally efficient methodology for suspension optimization is developed using stochastic techniques. A small (B-class) vehicle is chosen for the study and the following main suspension parameters are selected for optimization - spring stiffness, damping rate and vertical tire stiffness. The road is characterized as a stationary random process, using scaling and shaping filters representative of comparable roads in India and the USA.
Journal Article

Fatigue Life Assessment of Welded Structures with the Linear Traction Stress Analysis Approach

2012-04-16
2012-01-0524
Structural stress methods are now widely used in fatigue life assessment of welded structures and structures with stress concentrations. The structural stress concept is based on the assumption of a global stress distribution at critical locations such as weld toes or weld throats, and there are several variants of structural stress approaches available. In this paper, the linear traction stress approach, a nodal force based structural stress approach, is reviewed first. The linear traction stress approach offers a robust procedure for extracting linear traction stress components by post-processing the finite element analysis results at any given hypothetical crack location of interest. Pertinent concepts such as mesh-insensitivity, master S-N curve, fatigue crack initiation and growth mechanisms are also discussed.
Technical Paper

Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck

2007-10-30
2007-01-4151
The global energy situation, the dependence of the transportation sector on fossil fuels, and a need for rapid response to the global warming challenge, provide a strong impetus for development of fuel efficient vehicle propulsion. The task is particularly challenging in the case of trucks due to severe weight/size constraints. Hybridization is the only approach offering significant breakthroughs in near and mid-term. In particular, the series configuration decouples the engine from the wheels and allows full flexibility in controlling the engine operation, while the hydraulic energy conversion and storage provides exceptional power density and efficiency. The challenge stems from a relatively low energy density of the hydraulic accumulator, and this provides part of the motivation for a simulation-based approach to development of the system power management. The vehicle is based on the HMMWV platform, a 4×4 off-road truck weighing 5112 kg.
Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

2007-08-05
2007-01-3585
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

Structure-borne Vehicle Analysis using a Hybrid Finite Element Method

2009-05-19
2009-01-2196
The hybrid FEA method combines the conventional FEA method with the energy FEA (EFEA) for computing the structural vibration in vehicle structures when the excitation is applied on the load bearing stiff structural members. Conventional FEA models are employed for modeling the behavior of the stiff members in the vehicle. In order to account for the effect of the flexible members in the FEA analysis, appropriate damping and spring/mass elements are introduced at the connections between stiff and flexible members. Computing properly the values of these damping and spring/mass elements is important for the overall accuracy of the computations. Utilizing in these computations the analytical solutions for the driving point impedance of infinite or semi-infinite members introduces significant approximations.
Technical Paper

Life Cycle Management of Hydraulic Fluids and Lubricant Oils at Chrysler

1998-11-30
982221
A systematic life cycle management (LCM) approach has been used by Chrysler Corporation to compare existing and alternate hydraulic fluids and lubricating oils in thirteen classifications at a manufacturing facility. The presence of restricted or regulated chemicals, recyclability, and recycled content of the various products were also compared. For ten of the thirteen types of product, an alternate product was identified as more beneficial. This LCM study provided Chrysler personnel with a practical purchasing tool to identify the most cost effective hydraulic fluid or lubricant oil product available for a chosen application on an LCM basis.
Technical Paper

Disc Brake Lining Shape Optimization by Multibody Dynamic Analysis

2004-03-08
2004-01-0725
Improving the performance characteristics of a typical disc brake encompasses a number of design strategies as well as limitations imposed by cost objectives. Utilizing pad loading uniformity in a design is one strategy that offers an improvement in desired performance characteristics, including a reduction in tapered lining wear as well as a possible reduced propensity for noise generation. To approach this design strategy, a procedure has been developed to tailor the brake pad lining profile to maximize pad loading uniformity in a multibody dynamics model of a typical disc brake. In determining an optimal lining configuration, a suitable compromise for gaining beneficial performance improvements in a cost effective manner is reached. The implementation of this design strategy involves the parametric definition of the lining profile by introducing a series of variables that are linked to the profile markers.
Technical Paper

Rollover Propensity Evaluation of an SUV Equipped with a TRW VSC System

2001-03-05
2001-01-0128
In this paper, a simulation-based dynamic rollover evaluation procedure is described. This work is based on the worst-case methodology developed at the University of Michigan, and is the result of a collaborated research project between the University of Michigan and TRW Inc. The target vehicle studied in this paper is a large production volume SUV. This vehicle is equipped with a production-intent TRW Vehicle Stability Control (VSC) system. The main goals of this paper are to (i) study the rollover propensity of this SUV, as influenced by vehicle and environment parameters such as vehicle speed, road condition, etc.; and (ii) investigate whether, and by how much, does the VSC system influence the rollover propensity of this SUV. The modeling, evaluation procedure, and preliminary evaluation results are reported.
Technical Paper

First Order Analysis for Automotive Body Structure Design-Part 2: Joint Analysis Considering Nonlinear Behavior

2004-03-08
2004-01-1659
We have developed new CAE tools in the concept design process based on First Order Analysis (FOA). Joints are often modeled by rotational spring elements. However, it is very difficult to obtain good accuracy. We think that one of the reasons is the influence of the nonlinear behavior due to local elastic buckling. Automotive body structures have the possibility of causing local buckling since they are constructed by thin walled cross sections. In this paper we focus on this behavior. First of all, we present the concept of joint analysis in FOA, using global-local analysis. After that, we research nonlinear behavior in order to construct an accurate joint reduced model. (1) The influence of local buckling is shown using uniform beams. (2) Stiffness decrease of joints due to a local buckling is shown. (3) The way of treating joint modeling considering nonlinear behavior is proposed.
Technical Paper

Design Optimization of Vehicle Structures for Crashworthiness via Equivalent Mechanism Approximations

2004-03-08
2004-01-1731
A new method for crashworthiness optimization of vehicle structures is presented, where an early design exploration is done by the optimization of an equivalent mechanism approximating a vehicle structure. An equivalent mechanism (EM) is a network of rigid bodies connected by prismatic and revolute joints with special nonlinear springs. These springs are designed to mimic the force-displacement characteristics of thin-walled beams often found in the vehicle body structures. A computer software is implemented that allows the designer to quickly construct an equivalent mechanism model of a structure using a graphical user interface (GUI) to optimize the model for given objectives prior to final tuning using finite element (FE) models. A case study of a vehicle front substructure consisting of mid and lower rails is presented, which demonstrates that the new approach can obtain a better design with less computational resources than the direct optimization of a FE model.
Technical Paper

Experimental Testing and Mathematical Modeling of the Interconnected Hydragas Suspension System

2003-03-03
2003-01-0312
The Moulton Hydragas suspension system improves small car ride quality by interconnecting the front and rear wheel on each side of the vehicle via a hydraulic fluid pipe between the front and rear dampers. A Hydragas system from a Rover Group MGF sports car was statically and dynamically tested to generate stiffness and damping coefficient matrices. The goal was to develop the simplest possible model of the system for use in ride quality studies. A linear model showed reasonable accuracy over restricted frequency ranges. A second model used bilinear spring and damping constants, and was more accurate for predicting force at both the front and rear units for frequencies from 1 to 8 Hz. The Hydragas system static stiffness parameters, when used in the model, caused peak force underprediction in the jounce direction. The bilinear model required increased jounce stiffness to account for hysteresis in the rubber elements of the system, and dynamic fluid flow phenomena.
Technical Paper

Brake and Clutch Pedal System Optimization Using Design for Manufacture and Assembly

1992-02-01
920774
This paper describes the application of the Design for Manufacture and Assembly (DFMA) method at Chrysler. Attention is focused on the development of the clutch and brake pedal and bracketry system of the PL project in the Small Car Platform. The Chrysler DFMA procedure including competitive evaluation and value engineering was utilized during the initial design phase involving product concept development from the original functional and manufacturing requirements. After the first laboratory tests, a number of key design and manufacturing concerns surfaced and led to a second cycle of DFMA analysis. The procedure permits major design functions and manufacturing and assembly process issues and criteria to be incorporated in the initial design stages.
Technical Paper

Steering System Noise Evaluation

2016-06-15
2016-01-1832
Intermediate shaft assembly is used to connect steering gear to the steering wheel. The primary function of the intermediate shaft is to transfer torsional loads. There is a high probability of noise propagating through the Intermediate shaft to the driver. The current standard for measuring the noise is by performing vehicle level subjective evaluations. If improperly clamped at either of the yokes, a sudden change in the direction of the torsional load on the Intermediate shaft can generate a displeasing noise. Noise can also be generated from the constant velocity joint. Intermediate shaft noise can be measured using a microphone or can be correlated to acceleration values. The benefit of measuring the acceleration over sound pressure level is the reduction of complexity of the test environment and test set up. The nature of the noise in question requires the filtering of low frequency data. This paper presents a new test procedure that has been developed by General Motors.
Technical Paper

Literature Survey of Water Injection Benefits on Boosted Spark Ignited Engines

2017-03-28
2017-01-0658
The automotive industry has been witnessing a major shift towards downsized boosted direct injection engines due to diminishing petroleum reserves and increasingly stringent emission targets. Boosted engines operate at a high mean effective pressure (MEP), resulting in higher in-cylinder pressures and temperatures, effectively leading to increased possibility of abnormal combustion events like knock and pre-ignition. Therefore, the compression ratio and boost pressure in modern engines are restricted, which in-turn limits the engine efficiency and power. To mitigate conditions where the engine is prone to knocking, the engine control system uses spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Several researchers have advocated water injection as an approach to replace or supplement existing knock mitigation techniques.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
Technical Paper

Experience in Sand Casting Aluminum MMC Prototype Components

1993-03-01
930179
Typical sand-casting techniques have been shown to be inappropriate in pouring particulate reinforced aluminum metal matrix composite (Al-MMC) castings. New gating/risering configurations were necessary to produce castings of acceptable soundness. Several automotive components, including brake rotors, cylinder liners and camshaft thrust plates, were prepared using special techniques. Initial durability test results of several Al-MMC prototype components are presented.
Technical Paper

An Electrorheologically Controlled Semi-Active Landing Gear

1993-04-01
931403
This study is to explore the application of electrorheology (ER) to the real-time control of damping forces that are transmitted through the nose landing gear for an F-106B aircraft. The main part of the landing gear is a strut that consists of a pneumatic spring and an ER controlled damper that is situated on the strut centerline and applies a force directly opposing the vertical displacement of the nose wheel. The damping element rotates in response to strut displacement, employing a co-axial arrangement of stator and rotor plates connected to the opposing electrodes in the control circuit. The vertical displacement is converted into rotation of the damper through a screw-nut mechanism. The ER fluid between the electrodes is thus engaged in shear along circumferential lines of action. This design results in a fast time response and a high ratio of strut forces achieved under ER- vs. zero-field control. Compact size and simplicity in fabrication are also attained.
Technical Paper

Extending the Enterprise: The Supplier Role in Product Stewardship

1995-12-01
952785
The bounds of Early Supplier Involvement (ESI) are extended through an integrated global raw material strategy which encompasses regulated substance control, material selection and rationalization, and design for recyclability/separability. A life cycle management (LCM) model is used to evaluate environmental, health, safety and recycling (EHS&R) issues in a systematic business decision framework.
Technical Paper

Environment, Health and Safety: A Decision Model for Product Development

1996-02-01
960407
Environmental issues continue to emerge as a significant concern of the public today. End-of-pipe controls have proven to be costly solutions and have not addressed the root causes of environmental issues. Pollution prevention programs better address concerns and produce more cost-effective solutions. Additionally, regulations can no longer be addressed in isolation. Industry must view regulatory requirements as other business matters are addressed. The integration of regulatory requirements into the business plan focuses the cost of compliance on appropriate products or processes and exposes formerly hidden costs. For highly outsourced OEM's, supplier participation is critical to the success of any program. The bounds of Early Supplier Involvement (ESI) are extended through an integrated global raw material strategy that encompasses regulated substance control, material selection and rationalization, and design for recyclability/separability.
X