Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Characterization of Exhaust Particulate Emissions from a Spark Ignition Engine

1998-02-23
980528
Exhaust particulate emissions from a 4-cylinder, 2.25 liter spark ignition engine were measured and characterized. A single-stage ejector-diluter system was used to dilute and cool the exhaust sample for measurement. The particulate measurement equipment included a condensation nucleus counter and a scanning mobility particle sizer. Exhaust measurements were made both upstream and downstream of the catalytic converter using three different fuels. Unlike particulate emissions in diesel engines, spark ignition exhaust particle emissions were found to be highly unstable. Typically, a stable “baseline” concentration on the order of 105 particles/cm3 is emitted. Occasionally, however, a “spike” in the exhaust particle concentration is observed. The exhaust particle concentrations observed during these spikes can increase by as much as two orders of magnitude over the baseline concentration.
Technical Paper

Diesel Exhaust Particle Size: Measurement Issues and Trends

1998-02-23
980525
Exhaust particle number concentrations and size distributions were measured from the exhaust of a 1995 direct injection, Diesel engine. Number concentrations ranged from 1 to 7.5×107 particles/cm3. The number size distributions were bimodal and log-normal in form with a nuclei mode in the 7-15 nm diameter range and an accumulation mode in the 30-40 nm range. For nearly all operating conditions, more than 50% of the particle number, but less than 1% of the particle mass were found in the nuclei mode. Preliminary indications are that the nuclei mode particles are solid and formed from volatilization and subsequent nucleation of metallic ash from lubricating oil additives. Modern low emission engines produce low concentrations of soot agglomerates. The absence of these agglomerates to act as sites for adsorption or condensation of volatile materials makes nucleation and high number emissions more likely.
Technical Paper

Particle and Gaseous Emission Characteristics of a Formula SAE Race Car Engine

2009-04-20
2009-01-1400
The focus of this work was the physical characterization of exhaust aerosol from the University of Minnesota Formula SAE team's engine. This was done using two competition fuels, 100 octane race fuel and E85. Three engine conditions were evaluated: 6000 RPM 75% throttle, 8000 RPM 50% throttle, and 8000 RPM 100% throttle. Dilute emissions were characterized using a Scanning Mobility Particle Sizer (SMPS) and a Condensation Particle Counter (CPC). E85 fuel produced more power and had lower particulate matter emissions at all test conditions, but more fuel was consumed.
Technical Paper

Synchronous, Simultaneous Optimization of Ignition Timing and Air-Fuel Ratio in a Gas-Fueled Spark Ignition Engine

1994-03-01
940547
A two-dimensional optimization process which simultaneously adjusts the spark timing and air-fuel ratio of a lean-burn natural gas fueled engine has been demonstrated. This has been done by first mapping the thermal efficiency against spark timing and equivalence ratio at a single speed and load combination to obtain the 3-D surface of efficiency versus the other two variables. Then the ability of the control system to find and hold the combination of timing and air-fuel ratio which gives the highest thermal efficiency was explored. The control system described in SAE Paper No. 940546 was used to map the thermal efficiency versus equivalence ratio and ignition timing. NOx, CO, and HC maps were also obtained to determine the tradeoffs between efficiency and emissions. A load corresponding to a brake mean effective pressure of 0.467 MPa was maintained by a water brake dynamometer. A speed of 2000 rpm was maintained by a fuel-controlled governor.
Technical Paper

A PC-Based Fuel and Ignition Control System Used to Map the 3-D Surfaces of Torque and Emissions Versus Air-Fuel Ratio and Ignition Timing

1994-03-01
940546
A system was designed for controlling fuel injection and ignition timing for use on a port fuel injected, gas-fueled engine. Inputs required for the system include manifold absolute pressure, manifold air temperature, a once per revolution crankshaft pulse, a once per cycle camshaft pulse, and a relative encoder pulse train to determine crank angle. A prototype card installed in the computer contains counters and discrete logic which control the timing of ignition and injection events. High current drivers used to control the fuel injector solenoids and coil primary current are optically isolated from the computer by the use of fiber optic cables. The programming is done in QuickBASIC running in real time on a 25 MHz 80486 personal computer. The system was used to control a gas-fueled spark ignition engine at various conditions to map the torque versus air-fuel ratio and ignition timing. Each surface was mapped for a given fuel flow and speed.
Technical Paper

Emissions Characteristics of Soy Methyl Ester Fuels in an IDI Compression Ignition Engine

1995-02-01
950400
As part of an ongoing program to control the emissions of diesel-powered equipment used in underground mines, the U. S. Bureau of Mines evaluated exhaust emissions from a compression ignition engine using oxygenated diesel fuels and a diesel oxidation catalyst (DOC). The fuels include neat (100%) soy methyl ester (SME), and a blend of 30% SME (by volume) with 70% petroleum diesel fuel. A Caterpillar 3304 PCNA engine was tested for approximately 50 hours on each fuel. Compared with commercial low-sulfur diesel fuel (D2), neat SME increased volatile organic diesel particulate matter (DPM) but greatly decreased non-volatile DPM, for a net decrease in total DPM. The DOC further reduced volatile and total DPM NOx emissions were slightly reduced for the case of neat SME, but otherwise were not significantly affected. Peak brake power decreased 9% and brake specific fuel consumption increased 13 to 14% for the neat methyl soyate because of its lower energy content compared with D2.
Technical Paper

Effect of Alcohols as Supplemental Fuel for Turbocharged Diesel Engines

1975-02-01
750469
Alcohols are examined as supplemental carbureted fuels for highspeed turbocharged diesels as typified by the White Motor/Waukesha F310 DBLT (6 cylinder, 310 cu. in.). Most of the work was with methanol; ethanol and isopropanol were compared at a few points. Fumigation (dual-fueling) with alcohol significantly reduced smoke and intake manifold temperature. These effects were largest at high load. Efficiency and HC emissions were essentially unchanged. Cylinder pressures and rise rates were examined for possible adverse effects on engine structure. The range of speed and load favorable to alcohol dual-fueling are such that, should alcohols become economically competitive as fuels, a practical duel-fuel system could be applied to existing diesel engines.
Technical Paper

Exhaust Particulate Emissions from a Direct Injection Spark Ignition Engine

1999-03-01
1999-01-1145
Experiments were performed to measure the average and time-resolved particle number emissions and number-weighted particle size distributions from a gasoline direct injection (GDI) engine. Measurements were made on a late model vehicle equipped with a direct injection spark ignition engine. The vehicle was placed on a chassis dynamometer, which was used to load the engine to road load at five different vehicle speeds ranging from 13 - 90 km/hr. Particle number emissions were measured using a TSI 3020 condensation nucleus counter, and size distributions were measured using a TSI 3934 scanning mobility particle sizer. Average polydisperse number concentration was found to increase from 1.1 × 108 particles/cm3 at 13 km/hr to 2.8 × 108 particles/cm3 at 70 km/hr. Under a closed-loop, stoichiometric homogeneous charge operating mode at 90 km/hr, number emissions fell to 9.3 × 107 particles/cm3 (at all other operating conditions, the engine was in a lean stratified charge operating mode).
Technical Paper

Influence of an Iron Fuel Additive on Diesel Combustion

1998-02-23
980536
This program used a 0.6 liter DI NA single cylinder diesel engine to study the influence of ferrocene as a fuel additive on particulate and NOx emissions and heat release rates. Previous Studies1,15 have shown efficiency and particulate emission benefits only after engine conditioning. Two engine configurations were tested: standard aluminum piston with normal engine deposits and a second test with the engine cleaned to “new engine condition”, but with the piston replaced with a thermal barrier coated piston. Particle concentration and size in roughly the 7.5 to 750 nm diameter range were measured with a condensation nucleus counter and an electrical aerosol analyzer. Heat release rates and IMEPs were calculated from in-cylinder pressure data. Particle number concentrations increased substantially when the 250 ppm dose was first started with both engine configuration, but decreased 30% to 50% with conditioning.
X