Refine Your Search

Topic

Search Results

Journal Article

Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures

2014-06-30
2014-01-2079
Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range.
Journal Article

Application of Dynamic Phasor Concept in Modeling Aircraft Electrical Power Systems

2013-09-17
2013-01-2083
As future commercial aircraft incorporates more EMAs, the aircraft electrical power system architecture will become a complex electrical distribution system with increased numbers of power electronic converters (PEC) and electrical loads. The overall system performance and the power management for on-board electrical loads are therefore key issues that need to be addressed. In order to understand these issues and identify high pay-off technologies that would enable a major improvement of the overall system performance, it is necessary to study the aircraft EPS at the system level. Due to the switching behaviour of power electronic devices, it is very time-consuming and even impractical to simulate a large-scale EPS with some non-linear and time-varying models. The dynamic phasor (DP) technique is one way to solve that problem.
Journal Article

The Effect of Reducing Compression Ratio on the Work Output and Heat Release Characteristics of a DI Diesel under Cold Start Conditions

2008-04-14
2008-01-1306
An experimental investigation has been carried out to compare the indicated performance and heat release characteristics of a DI diesel engine at compression ratios of 18.4:1 and 15.4:1. The compression ratio was changed by modifying the piston bowl volume; the bore and stroke were unchanged, and the swept volume was nominally 500cc. The engine is a single cylinder variant of modern design which meets Euro 4 emissions requirements. Work output and heat release characteristics for the two compression ratios have been compared at an engine speed of 300 rev/min and test temperatures of 10, -10 and -20°C. A more limited comparison has also been made for higher speeds representative of cold idle at one test temperature (-20°C). The reduction in compression ratio generally produces an increase in peak specific indicated work output at low speeds; this is attributable to a reduction in blowby and heat transfer losses and lower peak rates of heat release increasing cumulative burn.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Technical Paper

Comparison of Methods for Modelling Mid-to-High Frequency Vibro-Acoustic Energy Distributions in a Vehicle Floor Structure

2016-06-15
2016-01-1853
Car floor structures typically contain a number of smaller-scale features which make them challenging for vibro-acoustic modelling beyond the low frequency regime. The floor structure considered here consists of a thin shell floor panel connected to a number of rails through spot welds leading to an interesting multi-scale modelling problem. Structures of this type are arguably best modelled using hybrid methods, where a Statistical Energy Analysis (SEA) description of the larger thin shell regions is combined with a finite element model (FEM) for the stiffer rails. In this way the modal peaks from the stiff regions are included in the overall prediction, which a pure SEA treatment would not capture. However, in the SEA regions, spot welds, geometrically dependent features and directivity of the wave field are all omitted. In this work we present an SEA/FEM hybrid model of a car floor and discuss an alternative model for the SEA subsystem using Discrete Flow Mapping (DFM).
Technical Paper

An Integrated System’s Approach Towards Aero Engine Subsystems Design

2016-09-20
2016-01-2020
This paper proposes an integrated system’s approach towards design of aero-engine subsystems - seals, bearing chamber, generator and power system. In a conventional design approach, the design of the overall system is typically broken-down into subsystems. Therefore, the focus is not on the mutual interaction between different components or subsystems, resulting in a lack of characterization of the overall system performance at the design phase. A systems design approach adopts a much broader outlook, focusing on the overall optimization of the system performance. This paper is divided into two parts. The first part presents an integrated approach for modelling the electrical, mechanical and hydraulic subsystems of aero engines, in order to analyze the fluid dynamics interactions and reduce the transversal shaft vibrations. For this, an in-line starter/generator and an air-riding seal are studied.
Technical Paper

Integrated Design of Motor Drives Using Random Heuristic Optimization for Aerospace Applications

2017-09-19
2017-01-2030
High power density for aerospace motor drives is a key factor in the successful realization of the More Electric Aircraft (MEA) concept. An integrated system design approach offers optimization opportunities, which could lead to further improvements in power density. However this requires multi-disciplinary modelling and the handling of a complex optimization problem that is discrete and nonlinear in nature. This paper proposes a multi-level approach towards applying random heuristic optimization to the integrated motor design problem. Integrated optimizations are performed independently and sequentially at different levels assigned according to the 4-level modelling paradigm for electric systems. This paper also details a motor drive sizing procedure, which poses as the optimization problem to solve here. Finally, results comparing the proposed multi-level approach with a more traditional single-level approach is presented for a 2.5 kW actuator motor drive design.
Technical Paper

Evaluating Performance of Uncoated GPF in Real World Driving Using Experimental Results and CFD modelling

2017-09-04
2017-24-0128
Environmental authorities such as EPA, VCA have enforced stringent emissions legislation governing air pollutants released into the atmosphere. Of particular interest is the challenge introduced by the limit on particulate number (PN) counting (#/km) and real driving emissions (RDE) testing; with new emissions legislation being shortly introduced for the gasoline direct injection (GDI) engines, gasoline particulate filters (GPF) are considered the most immediate solution. While engine calibration and testing over the Worldwide harmonized Light vehicles Test Cycle (WLTC) allow for the limits to be met, real driving emission and cold start constitute a real challenge. The present work focuses on an experimental durability study on road under real world driving conditions. Two sets of experiments were carried out. The first study analyzed a gasoline particulate filter (GPF) (2.4 liter, diameter 5.2” round) installed in the underfloor (UF) position and driven up to 200k km.
Technical Paper

Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator

2022-03-08
2022-01-0055
Permanent magnet (PM) electrical machine has far-reaching impacts in aviation electrification due to the continuous development in high power density and high efficiency electrical drives. The primary barrier to acceptance of permanent magnet machines for safety-critical starter-generator systems is its low fault-tolerance capability and low reliability (for the conventional designs). This article investigates a modular triple three-phase PM starter-generator comprehensively, including the tradeoff of fault-tolerant topology, optimization design process, analysis of electromagnetic (highlight the post-fault analysis) and thermal behavior, respectively. The triple three-phase segmented topology proposed meet the fault-tolerant requirement along with complete electrical, magnetic, and thermal isolation. There would be cost penalty on the proposed topology, but it gets offset by the ease of manufacturing of coils and their insertion.
Technical Paper

A Model for the Investigation of Temperature, Heat Flow and Friction Characteristics During Engine Warm-Up

1993-04-01
931153
A computational model has been developed to support investigations of temperature, heat flow and friction characteristics, particularly in connection with warm-up behaviour. A lumped capacity model of the engine block and head, empirically derived correlations for local heat transfer and friction losses, and oil and coolant circuit descriptions form the core of the model. Validation of the model and illustrative results are reported.
Technical Paper

The Determination of Heat Transfer from the Combustion Chambers of SI Engines

1993-04-01
931131
Two methods of determining the rate of heat transfer from the combustion chamber have been investigated. A First Law analysis is shown to be ill-conditioned because of sensitivity to heat release and gas property calculations. An alternative approach equates cycle-averaged chamber heat transfer to the difference between heat rejected to the coolant and gas heat transfer to the exhaust port. This has been examined as a basis for calibrating the Woschni correlation.
Technical Paper

Computer Aided Evaluation of Cold Start Fuelling Strategy and Calibration Details for Spark Ignition Engines

1994-02-01
940085
Spark ignition engines for automotive applications must have good cold start performance characteristics at sub-zero ambient temperatures. Satisfactory performance is most difficult to achieve at the lower end of the temperature range, typically around -30°C. The start characteristics of a particular engine depend on basic design features, starter motor characteristics, and the calibration and strategy used to regulate fuel supply during start up. The paper reports a computational model which enables the investigation of these with the minimum of experimental data. The model has been developed to run on desk-top PC machines, specifically as a CAE development tool. The formulation of the model and the experimental tests were used to generate the input data required for particular applications are described.
Technical Paper

Heat Transfer to the Combustion Chamber Walls in Spark Ignition Engines

1995-02-01
950686
The cycle-by-cycle variation of heat transferred per cycle (q) to the combustion chamber surfaces of spark ignition engines has been investigated for quasi-steady and transient conditions produced by throttle movements. The heat transfer calculation is by integration of the instantaneous value over the cycle, using the Woschni correlation for the heat transfer coefficient. By examination of the results obtained, a relatively simple correlation has been identified: This holds both for quasi-steady and transient conditions and is on a per cylinder basis. The analysis has been extended to define a heat flux distribution over the surface of the chamber. This is given by: where F(x/L) is a polynomial function, q″ is the heat transfer per cycle per unit area to head and piston crown surfaces and gives the distribution along the liner
Technical Paper

Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine

1996-02-01
960273
Surface-mounted heat flux sensors have been used in the intake port of a fuel injected, spark ignition engine to investigate heat transfer between the surface, the gas flows through the port, and fuel deposited in surface films. The engine is of a four valve per cylinder design, with a bifurcated intake port. For dry-port conditions heat transfer per cycle varies between 0 and 300 J/m2 depending on location, towards the surface at low temperatures and away from the surface at fully-warm conditions. Particular attention has been given to the changes in heat transfer rate associated with fuel deposition. Typically this is of the order of 5 kW/m2 in regions of heavy fuel deposition and varies by a factor of 2 over the period of an engine cycle. During warm-up, as coolant temperature increases from 0 to 90°C, changes in heat transfer associated with fuel deposition typically increase from 300 J/m2 to 1000 J/m2.
Technical Paper

Effect of Coolant Mixture Composition on Engine Heat Rejection Rate

1996-02-01
960275
The rate of heat rejection to the coolant system of an internal combustion engine depends upon coolant composition, among other factors, because this influences the coolant side heat transfer coefficient. The correlation developed by Taylor and Toong for heat transfer rate has been modified to account for this effect. The modification retains the gas-to-coolant passage thermal resistance implicit in the original correlation. The modified correlation gives predictions in agreement with experimental data. Compared to 100% water, mixtures of 50% ethylene glycol/50% water lower heat rejection rates by typically 5% and up to 25% in the extreme. This depends upon local conditions in the coolant circuit, which can give rise to different heat transfer regimes. Application of the modified correlation is outlined and illustrated.
Technical Paper

Intra-Cycle Resolution of Heat Transfer to Fuel in the Intake Port of an S.I. Engine

1996-10-01
961995
Previously reported studies of heat transfer between the intake port surface, gas flows in the port, and fuel deposited in surface films have been extended to examine details of the heat flux variations which occur within the engine cycle. The dynamic response characteristics of the surface-mounted heat flux sensors have been determined, and measured heat flux data corrected accordingly to account for these characteristics. Details of the model and data processing technique used are described. Corrected intra-cycle variations of heat transfer to fuel deposited have been derived for engine operating conditions at 1000 RPM covering a range of manifold pressures, fuel supply rates, port surface temperatures, and fuel injection timings. Both pump-grade gasoline and isooctane fuel have been used. The effects of operating conditions on the magnitude and features of the heat flux variations are described.
Technical Paper

Fuel Film Evaporation and Heat Transfer in the Intake Port of an S.I. Engine

1996-05-01
961120
Surface heat transfer measurements have been taken in the intake port of a single cylinder four valve SI engine running on isooctane fuel. The objective has been to establish how fuel characteristics affect trends in surface heat transfer rates for a range of engine operating conditions. The heat transfer measurements were made using heat flux gauges bonded to the intake port surface in the region where highest rates of fuel deposition occur. The influence on heat transfer rates of the deposited fuel and its subsequent behaviour has been examined by comparing fuel-wetted and dry-surface heat transfer measurements. Heat transfer changes are consistent with trends predicted by convective mass transfer over much of the range of surface temperatures from 20°C to 100°C. Towards the upper temperature limit heat transfer reaches a maximum limited by the rate and distribution of fuel deposition.
Technical Paper

Correlation of Engine Heat Transfer for Heat Rejection and Warm-Up Modelling

1997-05-19
971851
A correlation for total gas-side heat transfer rate has been derived from the analysis of engine data for measured heat rejection rate, frictional dissipation, and published data on exhaust port heat transfer. The correlation is related to the form developed by Taylor and Toong, and the analysis draws on this. However, cylinder and exhaust port contributions are separated. Two empirical constants are fixed to best match predicted to measured results for heat rejection to coolant and oil cooler under steady-state conditions, and also for exhaust port heat transfer rates. The separated contributions also defined a correlation for exhaust port heat transfer rate. The description of gas-side heat transfer is suited to needs for the analysis of global thermal behaviour of engines.
Technical Paper

Application of Dynamic Phasors for Modeling of Active Front-End Converter for More-Electric Aircraft

2012-10-22
2012-01-2157
The paper deals with the development of active front-end rectifier model based on dynamic phasors concept. The model addresses the functional modeling level as defined by the multi-layer modeling paradigm and is suitable for accelerated simulation studies of the electric power systems under normal, unbalanced and line fault conditions. The performance and effectiveness of the developed model have been demonstrated by comparison against time-domain models in three-phase and synchronous space-vector representations. The experimental verification of the dynamic phasor model is also reported. The prime purpose of the model is for the simulation studies of more-electric aircraft power architectures at system level; however it can be directly applied for simulation study of any other electrical power system interfacing with active front-end rectifiers.
Technical Paper

Modeling of An 18-pulse Autotransformer Rectifier Unit with Dynamic Phasors

2012-10-22
2012-01-2159
The more-electric aircraft (MEA) is the major trend for airplanes in the next generation. Comparing with traditional airplanes, a significant increase of on-board electrical and electronic devices in MEAs has been recognized and resulted in new challenges for electrical power system (EPS) designers. The design of EPS essentially involves in extensive simulation work in order to ensure the availability, stability and performance of the EPS under all possible operation conditions. Due to the switching behavior of power electronic devices, it is very time-consuming and even impractical to simulate a large-scale EPS with some non-linear and time-varying models. The functional models in the dq0 frame have shown great performance under balanced conditions but these models become very time-consuming under unbalanced conditions, due to the second harmonics in d and q axes. The dynamic phasor (DP) technique has been proposed to solve that problem.
X