Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures

2014-06-30
2014-01-2079
Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range.
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

2013-09-17
2013-01-2134
Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

2016-09-27
2016-01-2106
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Technical Paper

Diesel Injector Deposits - An Issue That Has Evolved with Engine Technology

2011-08-30
2011-01-1923
Diesel engines have traditionally been favoured in heavy-duty applications for their fuel economy, robustness, reliability and relative lack of fuel sensitivity. Recently it has seen a growth in its popularity in light duty applications due particularly to its fuel efficiency. However, as the engine technology and particularly the fuel injection equipment has evolved to meet ever stricter emissions legislation the engines have become more sensitive to deposit formation resulting from changes in fuel quality. This paper reviews bouts of concern over diesel fuel injector deposits, possible causes for the phenomenon and test methods designed to screen fuels to eliminate problems.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Journal Article

Improvement of Planning and Tracking of Technology Maturity Development with Focus on Manufacturing Requirements

2013-09-17
2013-01-2261
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
Technical Paper

Functional Modeling of 18-Pulse Autotransformer Rectifier Units for Aircraft Applications

2015-09-15
2015-01-2412
This paper aims to develop a general functional model of multi-pulse Auto-Transformer Rectifier Units (ATRUs) for More-Electric Aircraft (MEA) applications. The ATRU is seen as the most reliable way readily to be applied in the MEA. Interestingly, there is no model of ATRUs suitable for unbalanced or faulty conditions at the moment. This paper is aimed to fill this gap and develop functional models suitable for both balanced and unbalanced conditions. Using the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs, a generic functional model has been developed for both symmetric and asymmetric ATRUs. The developed functional models are validated through simulation and experiment. The efficiency of the developed model is also demonstrated by comparing with corresponding detailed switching models. The developed functional model shows significant improvement of simulation efficiency, especially under balanced conditions.
Technical Paper

Wall Permeability Estimation in Automotive Particulate Filters

2023-08-28
2023-24-0110
Porous wall permeability is one of the most critical factors for the estimation of backpressure, a key performance indicator in automotive particulate filters. Current experimental and analytical filter models could be calibrated to predict the permeability of a specific filter. However, they fail to provide a reliable estimation for the dependence of the permeability on key parameters such as wall porosity and pore size. This study presents a novel methodology for experimentally determining the permeability of filter walls. The results from four substrates with different porosities and pore sizes are compared with several popular permeability estimation methods (experimental and analytical), and their validity for this application is assessed. It is shown that none of the assessed methods predict all permeability trends for all substrates, for cold or hot flow, indicating that other wall properties besides porosity and pore size are important.
X