Refine Your Search

Topic

Search Results

Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Step Towards CO2-Neutral Aviation

2007-09-17
2007-01-3790
An approximation method for evaluation of the caloric equations used in combustion chemistry simulations is described. The method is applied to generate the equations of specific heat, static enthalpy, and Gibb's free energy for fuel mixtures of interest to gas turbine engine manufacturers. Liquid-phase fuel properties are also derived. The fuels include JP-8, synthetic fuel, and two fuel blends consisting of a mixture of JP-8 and synthetic fuel. The complete set of fuel property equations for both phases are implemented into a computational fluid dynamics (CFD) flow solver database, and multi-phase, reacting flow simulations of a well-tested liquid-fueled combustor are performed. The simulations are a first step in understanding combustion system performance and operational issues when using alternate fuels, at practical engine operating conditions.
Technical Paper

Vehicle Design Analysis and Validation for the Equinox REVLSE E85 Hybrid Electric Vehicle

2007-04-16
2007-01-1066
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2005 - 2007 Challenge X advanced technology vehicle competition series, sponsored by General Motors Corporation, the U.S. Department of Energy, and Argonne National Lab. This report documents the Equinox REVLSE (Renewable Energy Vehicle, the Larsen Special Edition) design and specifies how it meets the Vehicle Technical Specifications (VTS) set by Challenge X and HEVT through simulation and test results. The report also documents the vehicle control development process, specifies the control code generation, demonstrates an analysis of hybrid powertrain losses, and presents the REVLSE vehicle balance in its intended market.
Technical Paper

Technical and Economic Analysis of Industrial Algal Oil Extraction

2009-11-10
2009-01-3235
One barrier to the use of algae feedstocks as a source of CO2-neutral, renewable liquid fuel is the potential for high processing costs. An important processing step is the extraction of oil from the biomass. While there is substantial industrial experience in lipids from oil seeds, these processes may be unattractive for algal fuel oil due to high costs. Laboratory data suggest, however, that the relatively fragile nature of algal biomass may speed the mass transfer processes that control the extraction rate, and thus either reduce equipment size or allow increased throughput. In the present paper, laboratory-scale extraction data are used to develop a finite difference model of a full-scale extractor. The results indicate that such an extractor may have an increase in throughput of a factor of 5-10 without losing extraction efficiency.
Technical Paper

Fatty Acid Compositions of Solvent Extracted Lipids from Two Microalgae

2009-11-10
2009-01-3236
Oil extracted from microalgae has the potential to offset demand for petroleum, if conditions of cost and scale can be met. In this paper, we present the compositional differences of fatty acid methyl esters (FAMEs) obtained by solvent extraction from two different oleaginous microalgae. Oil samples were extracted from a proprietary alga (Alga X) and a more common Nannochloropsis oculata (NC) using the Soxhlet process with n-hexane. The neutral lipids contained in Alga X comprised approximately 40 to 60% of the algal dry weight, and the oil was mostly converted to methyl esters using a transesterification process. On the other hand, NC produced approximately 25% lipids, but the yield of methyl esters was often less than 1% and subject to high variation. FAMEs were analyzed using gas chromatography and the average chain lengths for NC were shown to be greater than the average chain lengths for Alga X.
Technical Paper

Combustion Characteristics of Acetone, Butanol, and Ethanol (ABE) Blended with Diesel in a Compression-Ignition Engine

2016-04-05
2016-01-0884
Acetone-Butanol-Ethanol (ABE) is an intermediate product in the ABE fermentation process for producing bio-butanol. As an additive for diesel, it has been shown to improve spray evaporation, improve fuel atomization, enhance air-fuel mixing, and enhance combustion as a whole. The typical compositions of ABE are in a volumetric ratio of 3:6:1 or 6:3:1. From previous studies done in a constant volume chamber, it was observed that the presence of additional acetone in the blend caused advancement in the combustion phasing, but too much acetone content led to an increase in soot emission during combustion. The objective of this research was to investigate the combustion of these mixtures in a diesel engine. The experiments were conducted in an AVL 5402 single-cylinder diesel engine at different speeds and different loads to study component effects on the various engine conditions. The fuels tested in these experiments were D100, ABE(3:6:1)10, ABE(3:6:1)20, ABE(6:3:1)10, and ABE(6:3:1)20.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

NOx Reduction in Compression-Ignition Engine by Inverted Ignition Phi-Sensitivity

2017-03-28
2017-01-0749
A new approach of NOx reduction in the compression-ignition engine is introduced in this work. The previous research has shown that during the combustion stage, the high temperature ignition tends to occur early at the near-stoichiometric region where the combustion temperature is high and majority of NOx is formed; Therefore, it is desirable to burn the leaner region first and then the near-stoichiometric region, which inhibits the temperature rise of the near-stoichiometric region and consequently suppresses the formation of NOx. Such inverted ignition sequence requires mixture with inverted phi-sensitivity. Fuel selection is performed based on the criteria of strong ignition T-sensitivity, negligible negative temperature coefficient (NTC) behavior, and large heat of vaporization (HoV).
Technical Paper

Comparison Study on Combustion and Emission Characteristics of ABE/IBE-Diesel Blends in a Common-Rreail Diesel Engine

2017-10-08
2017-01-2321
Bio-butanol has been considered as a promising alternative fuel for internal combustion engines due to its advantageous physicochemical properties. However, the further development of bio-butanol is inhibited by its high recovery cost and low production efficiency. Hence, the goal of this study is to evaluate two upstream products from different fermentation processes of bio-butanol, namely acetone-butanol-ethanol (ABE) and isopropanol-butanol-ethanol (IBE), as alternative fuels for diesel. The experimental comparison is conducted on a single-cylinder and common-rail diesel engine under various main injection timings (MIT) and equivalent engine load (EEL) conditions. The experimental results show that ABE and IBE significantly affect the combustion phasing. The start of combustion (SOC) is retarded when ABE and IBE are mixed with diesel. Furthermore, the ABE/IBE-diesel blends are more sensitive to the changes in MIT compared with that of pure diesel.
Technical Paper

Effect of Acetone-Gasoline Blend Ratio on Combustion and Emissions Characteristics in a Spark-Ignition Engine

2017-03-28
2017-01-0870
Due to the increasing consumption of fossil fuels, alternative fuels in internal combustion engines have attracted a lot of attention in recent years. Ethanol is the most common alternative fuel used in spark ignition (SI) engines due to its advantages of biodegradability, positively impacting emissions reduction as well as octane number improvement. Meanwhile, acetone is well-known as one of the industrial waste solvents for synthetic fibers and most plastic materials. In comparison to ethanol, acetone has a number of more desirable properties for being a viable alternative fuel such as its higher energy density, heating value and volatility.
Technical Paper

Experimental Investigation and Analysis of Combustion Process in a Diesel Engine Fueled with Acetone-Butanol-Ethanol/ Diesel Blends

2016-04-05
2016-01-0737
The performance and emission of an AVL 5402 single-cylinder engine fueled with acetone-butanol-ethanol (ABE) / diesel blends were experimentally investigated at various load conditions and injection timings. The fuels tested in the experiments were ABE10 (10% ABE, 90% diesel), ABE20 and diesel as baseline. Thermodynamics analyses of pressure traces acquired in experiments were performed to show the impact of ABE concentration to the overall combustion characteristics of the fuel mixtures. Cumulative heat release analysis showed that ABE mixtures generally retarded the overall combustion phasing, ignition delays of ABE-containing fuels were significantly extended, however, combustion rate during CA10∼CA50 were accelerated at different extent. Pressure rise rate of ABE-containing fuels further implicated that the premixed combustion were more dominant than that of diesel. Polytropic indices of both expansion and compression strokes were calculated from p-V diagram.
Technical Paper

Numerical Study and Parameter Optimization on a Diesel - Natural Gas Dual Fuel Engine

2016-04-05
2016-01-0769
This work presents a comprehensive computational study of diesel - natural gas (NG) dual fuel engine. A complete computational model is developed for the operation of a diesel - NG dual fuel engine modified from an AVL 5402 single cylinder diesel test engine. The model is based on the KIVA-3V program and includes customized sub-models. The model is validated against test cell measurements of both pure diesel and dual fuel operation. The effects of NG on ignition and combustion in dual fuel operation are analyzed in detail. Zero-dimensional computations with a diesel surrogate reaction mechanism are conducted to discover the effects of NG on ignition and combustion and to reveal the fundamental chemical mechanisms behind such effects. Backed by the detailed theoretical analysis, the engine operation parameters are optimized with genetic algorithm (GA) for the dual fuel operation of the modified AVL 5402 test engine.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Experimental Study on Performance and Emission of Acetone-Ethanol and Gasoline Blends in a PFI Spark Ignition Engine

2016-04-05
2016-01-0833
To face the challenges of fossil fuel shortage and air pollution problems, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. The literature shows that the acetone in the Acetone-Butanol-Ethanol (ABE) blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. In order to study the effects of acetone addition into commercial gasoline, this study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E30) and acetone-ethanol-gasoline blends (AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200RPM with the default calibration (for gasoline), at 3 bar and 5 bar BMEP under various equivalence ratios.
Technical Paper

A Numerical Study on the Effects of Hot EGR on the Operation of Natural Gas Engine Ignited by Diesel-Butanol Blends

2017-03-28
2017-01-0760
Butanol, which is a renewable biofuel, has been regarded as a promising alternative fuel for internal combustion engines. When blended with diesel and applied to pilot ignited natural gas engines, butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency. However, high blend ratio of butanol is limited by its longer ignition delay caused by the higher latent heat and higher octane number, which restricts the improvement of emission characteristics. In this paper, the potential of increasing butanol blend ratio by adding hot exhaust gas recirculation (EGR) is investigated. 3D CFD model based on a detailed kinetic mechanism was built and validated by experimental results of natural gas engine ignited by diesel/butanol blends. The effects of hot EGR is then revealed by the simulation results of the combustion process, heat release traces and also the emissions under different diesel/butanol blend ratios.
Technical Paper

Refinement and Testing of an E85 Split Parallel EREV

2012-04-16
2012-01-1196
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended range hybrid electric vehicle. The competition requires participating teams to re-engineer a stock crossover utility vehicle donated by GM. The result of this design process is an Extended Range Electric Vehicle (EREV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design has achieved an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an all-electric range of 87 km (54 miles) [1].
Technical Paper

Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

2006-07-17
2006-01-2132
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA's Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450°C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Technical Paper

Ultra-Low Emission Liquid Nitrogen Automobile

1999-08-17
1999-01-2932
Means to extend the range of cryogen (liquid nitrogen or liquid air) powered automobiles via burning a small amount of fossil fuel (gasoline or liquid methane) have been investigated. By utilizing both an ambient air-heat exchanger to vaporize the cryogen and a fossil fuel-fired superheater to elevate the temperature of the gaseous product, the range of the vehicle can be three times that of an ambient-heated propulsion system while not exceeding current ultra-low emission standards. Internal and external combustion power cycles using either liquid air or nitrogen as the working fluid were found to be more fuel efficient than an internal combustion engine operating on the standard Otto cycle. The fuel-cryogen operating expense for the proposed hybrid propulsion systems was found to be higher than that of the conventional automobile; however, the performance calculations were very conservative.
Technical Paper

Controls Development and Vehicle Refinement for a 99% Showroom Ready Parallel Through the Road Plug-In Hybrid Electric

2014-10-13
2014-01-2906
This paper details the control system development process for the University of Washington (UW) EcoCAR 2 team over the three years of the competition. Particular emphasis is placed upon the control system development and validation process executed during Year 3 of the competition in an effort to meet Vehicle Technical Specifications (VTS) established and refined by the team. The EcoCAR 2 competition challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising consumer acceptability. The project takes place over a three year design cycle, where teams select a hybrid architecture and fuel choice before defining a set of VTS goals for the vehicle. These VTS are selected based on the desired static and dynamic performance targets to balance fuel consumption and emissions with consumer acceptability requirements.
Technical Paper

Vehicle Refinement and Testing of a Series-Parallel Plug-in Hybrid Electric Vehicle

2014-10-13
2014-01-2904
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is ready to compete in the Year 3 Final Competition for EcoCAR 2: Plugging into the Future. The team is confident in the reliability of their vehicle, and expects to finish among the top schools at Final Competition. During Year 3, the team refined the vehicle while following the EcoCAR 2 Vehicle Development Process (VDP). Many refinements came about in Year 3 such as the implementation of a new rear subframe, the safety analysis of the high voltage (HV) bus, and the integration of Charge Sustaining (CS) control code. HEVT's vehicle architecture is an E85 Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV), which has many strengths and weaknesses. The primary strength is the pure EV mode and Series mode, which extend the range of the vehicle and reduce Petroleum Energy Usage (PEU) and Greenhouse Gas (GHG) emissions.
X