Refine Your Search

Topic

Search Results

Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Journal Article

Rotary Fatigue Analysis of Forged Magnesium Road Wheels

2008-04-14
2008-01-0211
Fatigue analysis incorporating explicit finite element simulation was conducted on a forged magnesium wheel model where a rotating bend moment was applied to the hub to simulate rotary fatigue testing. Based on wheel fatigue design criteria and a developed fatigue post-processor, the safety factor of fatigue failure was calculated for each finite element. Fatigue failure was verified through experimental testing. Design modifications were proposed by increasing the spoke thickness. Further numerical and experimental testing indicated that the modified design passed the rotary fatigue test.
Journal Article

Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels

2013-04-08
2013-01-0173
Carburized parts often see use in powertrain components for the automotive industry. These parts are commonly quenched and tempered after the carburizing process. The present study compared the austempering heat treatment to the traditional quench-and-temper process for carburized parts. Samples were produced from SAE 8620, 4320, and 8822 steels and heat treated across a range of conditions for austempering and for quench-and-tempering. Distortion was examined through the use of Navy C-Ring samples. Microstructure, hardness, and Charpy toughness were also examined. X-ray diffraction was used to compare the residual stress found in the case of the components after the quench-and-temper and the austempering heat treatments. Austempering samples showed less distortion and higher compressive residual stresses, while maintaining comparable hardness values in both case and core. Toughness measurements were also comparable between both processes.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

Active Four Wheel Brake Proportioning for Improved Performance and Safety

2008-04-14
2008-01-1224
A vehicle undergoing longitudinal or lateral accelerations experiences load transfer, dynamically changing the normal load carried by each tire. Conventional braking systems are designed only to work adequately over a large range of conditions, but often ignore the dynamic state of the tire's normal load. Fortunately, new developments in braking system hardware give designers more control over the application of braking pressures. By identifying the tires that carry increased normal load, and biasing the braking system toward those tires, total braking force can be increased. The purpose of this research is to investigate advantages of open-loop load transfer based active brake pressure distribution. By estimating the tractive ability of the tires as a function of measurable vehicle conditions, brake pressure can be applied in proportions appropriate for the current dynamic state of the vehicle, referred to as Active Brake Proportioning (ABP).
Technical Paper

Implementation of Child Biomechanical Neck Behaviour into a Child FE Model

2009-04-20
2009-01-0472
This research focuses on the further development of a child finite element model whereby implementation of pediatric cadaver testing observations considering the biomechanical response of the neck of children under tensile and bending loading has occurred. Prior to this investigation, the biomechanical neck response was based upon scaled adult cadaver behaviour. Alterations to the material properties associated with ligaments, intervertebral discs and facet joints of the pediatric cervical spine were considered. No alteration to the geometry of the child neck finite element model was considered. An energy based approach was utilized to provide indication on the appropriate changes to local neck biomechanical characteristics. Prior to this study, the biomechanical response of the neck of the child finite element model deviated significantly from the tensile and bending cadaver tests completed by Ouyang et al.
Technical Paper

Wear and Galvanic Corrosion Protection of Mg alloy via Plasma Electrolytic Oxidation Process for Mg Engine Application

2009-04-20
2009-01-0790
Sliding wear of magnesium (Mg) engine cylinder bore surfaces and corrosion of Mg engine coolant channels are the two unsolved critical issues that automakers have to deal with in development of magnesium-intensive engines. In this paper, Plasma Electrolytic Oxidation (PEO) process was used to produce oxide coatings on AJ62 Mg alloy to provide wear and corrosion protection. In order to optimize the PEO process, orthogonal experiments were conducted to investigate the effect of PEO process parameters on the wear properties of PEO coatings. The PEO coatings showed a much better wear resistance, as well as a smaller friction coefficient, than the AJ62 substrate. The galvanic corrosion property of AJ62 Mg coupled with stainless steel and aluminum (Al) was investigated via immersion corrosion test in an engine coolant. Applying PEO coating on Mg can effectively prevent the galvanic corrosion attack to Mg.
Technical Paper

Metrics for Evaluating the Ride Handling Compromise

2010-04-12
2010-01-1139
Though the purpose of a vehicle's suspension is multi-faceted and complex, the fundamentals may be simply stated: the suspension exists to provide the occupants with a tolerable ride, while simultaneously ensuring that the tires maintain good contact with the ground. At the root of the familiar ride/handling compromise, is the problem that tuning efforts which improve either grip or handling are generally to the detriment of the other. This study seeks to set forth a clear means for examining the familiar ride/handing compromise, by first exploring the key ideas of these terms, and then by describing the development of content-rich metrics to permit a direct optimization strategy. For simplicity, the optimization problem was examined in a unilateral manner, where heave (vertical; z-axis) behaviour is examined in isolation, though the methods described herein may be extended to pitch and roll behaviour as well.
Technical Paper

Development of a Plastic Manifold Noise Syntheses Technique

2001-03-05
2001-01-1144
The effects of engine noise in plastic manifolds has been a subject of study in the automotive Industry. Several SAE papers have been published on the subject. Most testing described requires access to engine dynamometers and other elaborate equipment. As part of a general study of plastic intake manifold noise characteristics, this study was undertaken to develop a synthesis bench for enabling low cost noise testing of plastic induction systems including plastic manifolds. Computer simulation of engine intake noise was used as part of a correlation between the plastic manifold synthesis bench and actual engine measurements. The Fast Fourier Transform (FFT) analysis provided analogous results between the predicted theoretical and two measured signals with a fundamental frequency at approximately 80 Hz. Qualitative and statistical comparisons of the time domain signals also proved equally favourable. Recommendations are included for further development of this approach.
Technical Paper

Factors Affecting the Tensile Strength of Linear Vibration Welds of Dissimilar Nylons

2002-03-04
2002-01-0604
Three different pairs of high melting temperature and low melting temperature nylons have been welded together using three different design of experiment welding process parameter matrices. An unorthodox analysis of these has revealed that there is a general increase in strength as the total welding sliding distance of the two surfaces increases. This is not surprising. The analysis also reveals that, for a given sliding distance, the vibration amplitude should be large, which shortens the welding time. This strategy produces shorter cycle times and stronger welds, according to the data obtained in these test sets.
Technical Paper

Load and Lubricating Oil Effects on Friction of a PEO Coating at Different Sliding Velocities

2017-03-28
2017-01-0464
Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
Technical Paper

Engine Fault Detection Using Vibration Signal Reconstruction in the Crank-Angle Domain

2011-05-17
2011-01-1660
Advanced engine test methods incorporate several different sensing and signal processing techniques for identifying and locating manufacturing or assembly defects of an engine. A successful engine test method therefore, requires advanced signal processing techniques. This paper introduces a novel signal processing technique to successfully detect a faulty internal combustion engine in a quantitative manner. Accelerometers are mounted on the cylinder head and lug surfaces while vibration signals are recorded during engine operation. Using the engine's cam angular position, the vibration signals are transformed from the time domain to the crank-angle domain. At the heart of the transformation lies interpolation. In this paper, linear, cubic spline and sinc interpolation methods are demonstrated for reconstructing vibration signals in the crank-angle domain.
Technical Paper

In-vehicle Speech Intelligibility for the Hearing Impaired Using Speech Intelligibility Index

2011-05-17
2011-01-1681
Individuals with hearing impairments often report hearing difficulties within the driving environment. This is an ever growing issue given the increasing population of senior aged drivers. In this study, Speech Intelligibility Index (SII) is used to predict in-vehicle speech intelligibility of individuals having common hearing impairments. The effect of hearing threshold levels obtained from audiograms and the impact of vehicle background noise measured for various vehicle operating conditions, road surface types and talker and listener configurations are investigated. This is done by using measured and user-defined speech spectra as described by ANSI S3.5-1997 (Methods for Calculation of the Speech Intelligibility Index). The results demonstrate poor speech intelligibility for most situations considered and provide evidence for the need to improve automotive interior sound quality in terms of speech intelligibility for hearing impaired drivers including aged drivers.
Technical Paper

The Band Importance Function in the Evaluation of the Speech Intelligibility Index at the Speech Reception Threshold within a Simulated Driving Environment

2013-05-13
2013-01-1953
This study provides an overview of a novel method for evaluating in-vehicle speech intelligibility using the Speech Intelligibility Index (SII). The approach presented is based on a measured speech signal evaluated at the sentence Speech Reception Threshold (sSRT) in a simulated driving environment. In this context, the impact of different band importance functions in the evaluation of the SII using the Hearing in Noise Test (HINT) in a driving simulator is investigated.
Technical Paper

Wear and Corrosion Behaviours of PEA Alumina Coatings on Gray Cast Iron

2022-03-29
2022-01-0329
Alumina (Al2O3) thin film coatings are applied on Al alloys using Plasma Electrolytic Oxidation (PEO) method to reduce the wear and corrosion problems. Plasma Electrolytic Aluminating (PEA) is a technique which could generate Alumina coatings on cast iron, mild steel and copper alloys. In this study, the aim is to explore the anti-wear and anti-corrosion behaviours of PEA Alumina coatings on gray cast iron. The dry sliding tribology test data was obtained from Pin-on-Disk (POD) tests against SAE 52100 steel and Tungsten Carbide (WC) counterfaces. Comparing with the PEO Alumina coatings, the PEA Alumina coating has much lower Coefficient of Friction (COF) and less wear. The microstructure, chemical composition and phase composition of this coating were investigated with Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD), respectively. There was FeO (or FeAl2O4) found on the PEA Alumina coating.
Technical Paper

Control-Oriented Model for Electric Power Steering System

2006-04-03
2006-01-0938
Electric power steering (EPS) systems have been used to replace hydraulic power steering systems in vehicles. How to enhance the safety and reliability while reducing the manufacturing cost of EPS systems is still of strong interest to the automotive industry. In this paper, modeling analysis is conducted for advanced control of electric power steering system. Specifically, a mathematical model is proposed for a column-mounted EPS system and then a simplified model for control design purpose is proposed. Issues that need to be addressed, such as noise/ disturbance attenuation as well as potential fault detection/tolerance are analyzed. Simulation using CarSim™ is also presented for an optimal control design using the simplified model as an example to validate the proposed ideas.
Technical Paper

Noise Cancellation Technique for Automotive Intake Noise Using A Manifold Bridging Technique

2005-05-16
2005-01-2368
Due to considerable efforts of automobile manufacturers to attenuate various noise sources within the passenger compartment, other sources, including induction noise have become more noticeable. The present study investigates the feasibility of using a non-conventional noise cancellation technique to improve the acoustic performance of an automotive induction system by using acoustic energy derived from the exhaust manifold as the dynamic noise source to cancel intake noise. The validity of this technique was first investigated analytically using a computational engine simulation software program. Using these results, a physical model of the bridge was installed and tested on a motored engine. The realized attenuation of the intake noise was evaluated using conventional FFT analysis techniques as well as psychoacoustic metrics including loudness, sharpness, roughness and fluctuation strength.
Technical Paper

A Post-processor for Finite Element Stress-based Fatigue Analysis

2006-04-03
2006-01-0537
Explicit finite element simulations were conducted on an aluminum wheel model where a rotating bend moment was applied on its hub to simulate wheel cornering fatigue testing. A post-processor was developed to calculate equivalent von Mises alternating and mean stresses from stress tensor. The safety factors of fatigue design for each finite element were determined to assess the fatigue performance by utilizing the Goodman linear relationship. Elements with low safety factors were identified due to the prescribed boundary conditions and stress concentrations arising from wheel geometry.
Journal Article

Investigation of Al2O3-Ni Coated Cast Iron Brake Rotors Under Modified Brake Dynamometer Test Standards

2022-03-29
2022-01-0273
Due to the reduced or less-frequent usages of the friction brakes and the lower brake rotor temperature on electrical vehicles (EV), corrosion would much likely occur on brake rotors. Using hard braking to clean the corroded rotor surfaces often leads to extra rotor surface wear. Improvement in corrosion and wear resistance is an important technological topic to brake rotors for EVs. Many original equipment manufacturers (OEM) and their suppliers are exploring surface treatments including laser cladding and thermal spray processes on cast iron rotors to combat the corrosion issues. However, mentioned surface coating processes increase the cost of brake rotors and there is a need to search for cost-effective coating processes. In this research, a new Al2O3-Ni composite coating was proposed for preparation of a commercial cast iron brake rotor using plasma electrolytic aluminating (PEA) followed by electroless nickel plating (ENP) processes.
X