Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Automated Generation of AUTOSAR ECU Configurations Using Xtend: Watchdog Driver Example

2020-04-14
2020-01-1335
Automotive Open System Architecture (AUTOSAR) is a system-level standard that is formed by the worldwide partnership of the automotive manufacturers and suppliers who are working together to develop a standardized Electrical and Electronic (E/E) framework and architecture for automobiles. The AUTOSAR methodology has two main activities: system configuration and the Electronic Control Unit (ECU) configuration. The system configuration is the mapping of the software components to the ECUs based on the system requirements. The ECU configuration process is an important part of the ECU software integration and generation. ECU specific information is extracted from the system configuration description and all the necessary information for the implementation such as tasks, scheduling, assignments of the runnables to tasks and configuration of the Basic Software (BSW) modules, are performed. The ECU configuration process involves configuring every single module of the AUTOSAR architecture.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

2009-04-20
2009-01-0730
Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Technical Paper

Heat Release Based Adaptive Control to Improve Low Temperature Diesel Engine Combustion

2007-04-16
2007-01-0771
Heat-release and cylinder pressure based adaptive fuel-injection control tests were performed on a modern common-rail diesel engine to improve the engine operation in the low-temperature combustion (LTC) region. A single shot injection strategy with heavy amount of exhaust gas recirculation (EGR) was used to modulate the in-cylinder charge conditions to achieve the low-temperature combustion. Adaptive fuel-injection techniques were used to anchor the cylinder pressure characteristics in the desired crank angle window and thereby stabilize the engine operation. The response of the adaptive control to boost, fueling, and engine speed variations was also tested. A combination of adaptive fuel-injection and automatic boost/back-pressure controls had helped to make the transient emissions comparable to the steady-state LTC emissions.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

2008-04-14
2008-01-1000
A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Effect of Cooling Rates on the Microstructure Evolution and Eutectic Formation of As-cast Mg-Al-Ca Alloys

2009-04-20
2009-01-0789
A Mg-5.0wt.%Al-2.0wt.%Ca alloy (AC52) was cast at different cooling rates varying from 0.5 to 65 °C/s. The dendrites was characterized by determining the secondary dendrite arm spacing (SDAS) and the volume fraction of secondary eutectic phases with the linear intercept and point counting methods, respectively. The SDAS decreases significantly with increasing cooling rates, while the volume fraction of the eutectic phase increases from 10.8 ± 1.44 vol.% at 0.5 °C/s to 20.4 ± 1.52 vol.% at 20 °C/s. However, a further increase in cooling rate beyond 20 °C/s has limited influence on the volume fraction of eutectic phases. A large number of dispersed eutectic phases were observed in the primary α-Mg of the alloys cast at low cooling rates. Although, at the microscale, there were no dispersed eutectic phases in alloys cast at a high cooling rate of 30 °C/s, nanoscale eutectic phases were found by TEM observation.
Technical Paper

Active Suspension Handling Simulation using Cosimulation

2010-12-01
2010-01-1582
In this study the capabilities of a semi-active suspension and an active roll suspension are evaluated for comparison with a passive suspension. The vehicle used is a utility truck modeled as a multi-body system in ADAMS/Car while the ECU (electronic control unit) is built in Matlab/Simulink. Cosimulation is used in linking the vehicle model with the controller by exchanging the input and output values of each sub-system with one another. For the simulation models considered, results indicate that for a fish-hook cornering maneuver the semi-active suspension is limited in increasing vehicle performance while the active roll suspension significantly improves it. Further analysis is needed to confirm these findings.
Technical Paper

A Review of Human Physiological, Psychological & Human Biomechanical Factors on Perceived Thermal Comfort of Automotive Seats.

2017-03-28
2017-01-1388
Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
Technical Paper

The Band Importance Function in the Evaluation of the Speech Intelligibility Index at the Speech Reception Threshold within a Simulated Driving Environment

2013-05-13
2013-01-1953
This study provides an overview of a novel method for evaluating in-vehicle speech intelligibility using the Speech Intelligibility Index (SII). The approach presented is based on a measured speech signal evaluated at the sentence Speech Reception Threshold (sSRT) in a simulated driving environment. In this context, the impact of different band importance functions in the evaluation of the SII using the Hearing in Noise Test (HINT) in a driving simulator is investigated.
Technical Paper

Automated Generation of Automotive Open System Architecture Electronic Control Unit Configurations Using Xtend: Watchdog Driver Example

2021-05-10
2021-01-5050
Automotive Open System Architecture (AUTOSAR) is a system-level standard that is formed by the worldwide partnership of automotive manufacturers and suppliers who are working together to develop a standardized Electrical and Electronic (E/E) framework and architecture for automobiles. The AUTOSAR methodology has two main activities: system configuration and the Electronic Control Unit (ECU) configuration. The system configuration is the mapping of the software components to the ECUs based on the system requirements. The ECU configuration (EC) process is an important part of the ECU software integration and generation. ECU-specific information is extracted from the system configuration description, and all the necessary information for the implementation such as tasks, scheduling, and assignments of the runnables to tasks and configuration of the Basic Software (BSW) modules are performed. The EC process involves configuring every single module of the AUTOSAR.
Technical Paper

Cosimulation of Active Suspension

2005-04-11
2005-01-0984
The purpose of this study is to determine the feasibility of simulating an active suspension using cosimulation. The vehicle used is a utility truck created in ADAMS/View while the E.C.U. (electronic control unit) is implemented in Simulink for both a fully-active and semi-active controller. The LQR (Linear Quadratic Regulator) is used for the fully-active system while the semi-active system uses a switching law adopted from Karnopp et al. {1}. Nonlinear and linear vehicle models are compared and the influence of suspension bushings is examined. All simulations undertaken are geared towards evaluating the ride capabilities of such systems.
X