Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A New Decoupled CFD and FEM Methodology for the Fatigue Strength Assessment of an Engine Head

2008-04-14
2008-01-0972
A 2200 cc engine head for marine applications has been analysed and optimized by means of decoupled CFD and FEM simulations in order to assess the fatigue strength of the component. The fluid distribution within the cooling jacket was extensively analysed and improved in previous works, in order to enhance the performance of the coolant galleries. A simplified methodology was then proposed in order to estimate the thermo-mechanical behaviour of the head under actual engine operation [1, 2]. As a consequence of the many complex phenomena involved, an improved approach is presented in this paper, capable of a better characterization of the fatigue strength of the engine head under both high-cycle and low-cycle fatigue loadings. The improved methodology is once again based on a decoupled CFD and FEM analysis, with relevant improvements added to both simulation realms.
Technical Paper

Optimization of a Cooling Circuit in an Internal Combustion Engine for Marine Applications

2005-09-11
2005-24-049
An optimization study involving both fluid-dynamic and thermostructural aspects has been carried out for a 2200 cc turbocharged engine head for marine applications. In this cross-disciplinary problem, the structural and thermodynamic aspects have been decoupled. A preliminary set of CFD numerical analyses of the cooling jacket layout has been performed, in order to investigate critical aspects of the present configuration and improve the cooling performance, by means of local flow patterns and flow distribution analysis. At a second stage, temperature distributions within the metal cast parts have been derived from CFD in order to assess the fatigue strength of the component with structural finite elements. A proper choice of both CFD methodology and boundary conditions is carried out in order to determine a trade-off between computational effort and actual engine behavior representation.
X