Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Comprehensive Study on DOC Selection for Euro 6 Compliant Heavy Commercial Vehicles

2021-09-22
2021-26-0216
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms along with top performance for vehicle, a good strategy should be incorporated to control system out NOx emissions and soot regeneration. Extruded Vanadium catalyst is deployed for this passive regeneration system with DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter) and SCR (Selective Catalyst Reduction), where the amount of catalyst loading in DOC plays an apex role in deciding conversion efficiency of SCR and passive regeneration capabilities. This study mainly focuses on the impact of catalyst loading of DOC over SCR efficiency. NO2 to NOx ratio should be close to 0.5 for optimum conversion efficiency of SCR. Catalyst loading in DOC decides the amount of NO2 coming upstream to SCR.
Technical Paper

Tail Pipe Emission Study of an Aged Exhaust after Treatment System for 3.8 Litre Diesel Engine

2021-09-22
2021-26-0215
With implementation of stringent BSVI emission norms and regulations like OBD-II on vehicle, it is essential to define the life of exhaust after treatment along with the vehicle. Diesel after treatment generally consists of DOC, DPF and SCR. Lubricating oil contains phosphorus and zinc which adversely affect the DOC. Unburned hydrocarbons (UNHBC) and SOF in tail pipe get accumulated in the DPF. This requires regeneration process where in, high temperatures in exhaust after treatment (EATS) burn the adsorbed Sulphur or phosphorus, thereby improving the conversion efficiencies. Repeated regenerations lead to ash accumulation in DPF and this reduces its capability for soot accumulation. Sulphur in the exhaust impacts SCR through NOx conversion. The present study analyzes the effect of (1) Chemical aging (2) Thermal aging on 3.77 liter diesel engine after treatment. A test cycle was prepared to run the durability for EATS.
Technical Paper

Evaluation of Different Methodologies of Soot Mass Estimation for Optimum Regeneration Interval of Diesel Particulate Filter (DPF)

2021-09-22
2021-26-0208
Diesel engines have always been popular for their low end torque and lugging abilities. With their higher thermal efficiencies through technical advancements, diesel engines are preferred powertrains in mass transportation of goods as well as people [14] [15]. A diesel engine always banks on excess air, which is subjected to higher compression ratios so as to achieve temperatures, enough to facilitate auto-ignition of diesel. With the advent of turbocharging and intercooling, the air availability is further enhanced, ensuring better combustion efficiency, lesser HC, CO and particulate matter (PM) emissions together with improved fuel efficiencies [2] [15]. Higher air availability also has its own shortcomings in the form of higher NOx (Nitrogen oxides) emissions. With stringent emission norms in place, reduction of NOx as well as PM, without sacrificing performance and fuel economy, is of utmost importance.
Technical Paper

Air Quality Improvement in Air Conditioner Bus Saloon Through Carbon Activated Filters for Heavy Duty Commercial Vehicles

2021-09-22
2021-26-0312
The air purifier industry has seen a growth in terms of demand and sales lately. All credit goes to massive Industrialization in developing countries such as India. The most harmful of the pollutants are PM 2.5 articulates and NOx Emissions. This leads to the new trend of customers become health and comfort conscious and willing to pay more for better and improved transportation. To satisfy these demands, COEM’s are developing more numbers of Air conditioning buses. Although the OEM’s are meeting this demand of quantity, the quality of air from air conditioner is still suffer. One of the main reasons for this poor air quality is because of the ineffectiveness of conventional air conditioner air filters to control particulate materials i.e. PM2.5, biological pollutants i.e. microbes, bacteria, viruses, and gaseous pollutants i.e. CO, CO2, SO2, NOX, O3 & VOCs in air. As per various researches, health problems associated with bus occupant compartment air quality appear more frequently.
Technical Paper

Assessment & Optimization of Front End Cooling Module of a Commercial Vehicle by CFD Simulation & Prototype Testing

2020-04-14
2020-01-0164
Overall cycle time and prototype testing are significantly decreased by assessment of cooling module performance in the design stage itself. Hence, Front End Cooling and Thermal Management are essential components of the vehicle design process. Performance of the cooling module depends upon a variety of factors like frontal opening, air flow, under-hood sub-systems, module positioning, front grill design, fan operation. Effects of design modifications on the engine cooling performance are quantified by utilizing computational fluid dynamics (CFD) tool FluentTM. Vehicle frontal configuration is captured in the FE model considering cabin, cargo and underbody components. Heat Exchanger module is modelled as a porous medium to simulate the fluid flow. Performance data for the Heat Exchanger module is generated using the 1D KuliTM software. In this paper, CFD simulation of Front End Cooling is performed for maximum torque and maximum power operating conditions.
Technical Paper

Comparative Static Simulation Study of Aluminum Cylinder Head for Commercial Vehicles using Simulations Tools

2016-10-17
2016-01-2349
To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs. For commercial vehicles, an attempt is made to decrease weight of the current design without compromising its strength & stiffness, considering/bearing all the worst road/engine load cases and severe environmental conditions. The topic was chosen because of interest in higher payloads, lower weight, and higher efficiency. Automotive cylinder head must be lighter in weight, to meet increasingly demanding customer requirements. The design approach for cylinder head has made it difficult to achieve this target. A designer might make some judgment as to where ribs are required to provide stiffness, but this is based on engineering experience and Finite Element Analysis (FEA) of the stand-alone head.
Technical Paper

Design, Development and Validation of New Engine Head Cover with Advanced Sealing System by using Simulation Tools

2016-09-27
2016-01-8062
The existing head cover is having external oil and blow by separation unit, which is not only costlier but also complex and leads to increase in overall height of engine which was difficult to integrate in new variants of vehicles. A new head cover has been designed with internal baffle type oil and blow by separation system to ensure efficient separation and proper packaging of the system in new variants. The new system has been finalized after 26 DOE’s of different wire mesh sizes and different baffle plate size and positions. The final system has two bowl shaped separation unit with wire mesh, two cup type oil separation passages and one baffle plate for separating blow by. The system works on condensation and gravity method. The blow by is guided through a well-defined passage integrated in aluminum cylinder head cover itself. The passage angle is maintained to ensure minimum oil flow with blow by.
Technical Paper

Soot Formation in EGR & Non EGR with SCR After Treatment in Light Duty Truck Application

2017-07-10
2017-28-1945
During the last few decades, concerns have grown on the negative effects that diesel particulate matter has on health. Because of this, particulate emissions were subjected to restrictions and various emission-reduction technologies were developed. It is ironic that some of these technologies led to reductions in the legislated total particulate mass while neglecting the number of particles. Focusing on the mass is not necessarily correct, because it might well be that not the mass but the number of particles and the characteristics of them (size, composition) have a higher impact on health. During the diesel engine combustion process, soot particles are produced which is very harmful for the atmosphere. Particulate matter is composed of much organic and inorganic composition which was analyzed after the optimization of SCR and EGR engine out.
Technical Paper

Technology Challenges and Strategies for BS-VI in Commercial Vehicles

2017-07-10
2017-28-1937
Air Pollution is a major concern in our country due to which Indian Government has taken a decision to move from BS-IV to BS-VI which is nearly 90% reduction in NOx and 50% in particulate matter along with addition of particulate number regulation for BS-VI in comparison to BS-IV norms in very short span of time. Vehicle manufacturers are also having the challenge to produce low cost and fuel efficient product with BS-VI solution in order to meet tightening emission regulations and increasing needs of lower fuel consumption. Detailed study is done with different approaches to meet BS-VI emission which is elaborately explained in different aspect of engine design and after treatment parameter with its pros and cons. After Treatment selection plays an important role in engine development to meet stringent emission legislations and customer demands. Strategies for BS-VI were described with the advantage and drawbacks for after treatment selection.
Technical Paper

Performance Analysis of Engine down Speeding in Emission & Fuel Economy

2017-07-10
2017-28-1921
Engine down speeding is rapidly picking up momentum in many segment of world market. Numerous engine down speeding packages from OEM have been tailored to take advantage of the increased efficiencies associated with engine down speeding. Running engine at lower rpm has numerous advantages. The most obvious of these is reduced fuel consumption, since the engine can spend more time running within its optimum efficiency range. By down speeding, the engine is made to run at low speeds and with high torques. For the same power, the engine is operated at higher specific load- Brake Mean Effective pressure (BMEP) which results in higher efficiency and reduced fuel consumption-Brake Specific Fuel Consumption (BSFC). The reasons for increased fuel efficiency are reduced engine friction due to low piston speeds, reduced relative heat transfer and increased thermodynamic efficiency.
Technical Paper

Experimental Investigation on the Effect of Pilot and Post Injection on Engine Performance and Emissions

2018-07-09
2018-28-0015
Diesel engines are facing stringent norms and future survival with its lower availability is one of the biggest concerns for OEMs of heavy duty commercial vehicles. This is leading to uplifting of new, latent and innovative techniques to achieve these norms with best possible BSFC to reduce overall diesel consumption. The prime objective of this study is to identify and explore the latent strength of pre and post injection on engine performance, emissions and oil dilution due to soot. The post injection strategy has the potential to reduce soot with almost same NOx and fuel consumption depending on the delay of post injection and its quantity. It aids to increase the engine out temperatures for assistance of after-treatment devices, thus meeting higher temperature requirements for NOx and PM conversion for stringent norms of BSVI.
Technical Paper

Design Optimization of Engine Cooling Unit Packaging for Commercial Vehicle

2018-07-09
2018-28-0013
An engine cooling system is required to maintain stable operating temperature for the engine and prevent it from overheating. Thermal distortion of engine parts can take place if proper cooling is not maintained and engine may loss efficiency. One of the major problem in this domain is to incorporate separate cooling systems for the different variants of engines (different power rating). A single optimized cooling unit is desired to manage the entire range of engine rated power. The factors that affect the cooling system are front end grill opening area, air recirculation, location of snorkel inlet, radiator core size, which need to be tuned to get appropriate results. The above parameters are tuned to obtain appropriate results using the Computational Fluid Dynamics (CFD) simulations. In the next stage, on road cooling trials are performed and real time data is collected.
Technical Paper

A Comprehensive Study on Euro 6 Turbocharger Selections and Its Deterioration with Closed Crank-Case Ventilation in Heavy Commercial Vehicles

2019-09-09
2019-24-0061
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms a good strategy will be to optimize the engine out emission through in cylinder emission control techniques and a right sized after treatment system has to be used for this optimized engine. There exist several factors and trade-off between these should be established for in cylinder optimization of emissions. Since the turbocharger plays an apex role in controlling both the performance and engine out emissions of a CI engine, turbocharger selection is a crucial step in the development of new generation of Euro 6 engines in India. Such engines are equipped with additional actuators such as Intake Throttle Valve and Exhaust Throttle Valve and combination of these flap operations with turbocharger output plays a prominent role in controlling performance and emission.
Technical Paper

Assessment of Motor Cooling Performance in Commercial EV Vehicles through Numerical Simulation

2022-10-05
2022-28-0045
In an electric vehicle, engine is replaced with battery and transmission is replaced with traction motor. Thermal management of electric battery and motor became a necessary evaluation step in the design and development process of electric vehicles. The temperature of the traction motor coolant is required to be maintained below 600C to ensure proper functioning of the system. Coolant takes away heat from traction motor, motor controller along with an on-board charger in battery charging and discharging conditions. In this paper the cooling unit selection for the total required heat rejection from all three components is analytically calculated and thermal management methodology of liquid-cooled Electric Motor is being studied and documented with the help of numerical simulation. The results are further validated with test results in Electric bus for city application.
Technical Paper

Fully Retractable Easy Access Spare Wheel Carrier Mechanism for Commercial Vehicles

2024-04-09
2024-01-2225
The new idea discussed in this paper pertains to the carrier mechanism for spare wheels in heavy commercial vehicles. Typically, these vehicles are equipped with a spare wheel carrier featuring a rope mechanism for loading and unloading the spare wheel. The conventional placement of this system is on the side of the frame/chassis or within the limits of the side member. However, the tire-changing process in this system is often arduous, time-consuming, and requires significant effort. The proposed invention addresses these challenges by repositioning the spare wheel to a vertical orientation, facilitating easier access to its bolts and simplifying the removal process from the mountings. Furthermore, the innovation incorporates a three-way actuation system (Air Actuated, Electric motor-driven, or Hydraulic cylinder actuated mechanisms), thereby reducing the need for manual effort and enhancing driver comfort.
X