Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Hardware Model for Vehicular Network to Control Air Pollution Leading to Big Data Analytics

2018-07-09
2018-28-0038
The foremost emphasis of this paper is to project the need for collecting the outlet pollutant gases from the individual vehicle which is on fleet and the need to maintain the vehicle to make the surveillance of vehicle in the fleet. The data that is collected from the vehicle was stored in the cloud and provided to the vehicle user mobile application that displays the level of pollutant. With the help of pollutant level the user may be aware of the maintenance or the change in vehicle filling station, which will reduce the overall level of pollutant of the vehicle. The data that is uploaded in the cloud will be used by the regional transport office to keep track of the vehicle user.
Technical Paper

NOx Control Using Porous Medium Combustion in DI Diesel Engine - An Attempt through Simulation Study

2018-07-09
2018-28-0077
At present, the emissions from an internal combustion engine exhaust is reduced by exhaust after treatment devices. However, after treatment devices like SCR which is used to control NOx, results in additional weight, high costs and rejects toxic gases like ammonia etc. To overcome this problem, a new combustion technique should be developed to improve the primary combustion processes inside the combustion chamber itself to reduce these exhaust gas emissions. This work presents the results of such a technique that is applicable to direct injection, Diesel engines. The technique is based on the porous medium combustion (PMC) technology, which is developed for steady state household and industrial combustion processes. Based on the adiabatic combustion in porous medium (PM), a porous medium in engine piston as a concept is proposed here to achieve improved combustion efficiency and low emissions. Using a commercial code CONVERGE the entire cycle is simulated and presented here.
Technical Paper

Experimental Study and CFD Analysis of an Aerofoil Structure for Automotive Body Design

2018-07-09
2018-28-0091
A study of an aerofoil structure used for automotive body design is being conducted and an experiment has been performed to determine the lift and drag forces produced by it by varying its Angle of Attack. The NACA0018 and NACA0015 aerofoil with a chord length of 16 cm were used for this study. Then an analysis was done with the help of (CFD) computational fluid dynamics. The results obtained by CFD analysis where compared by the experimental results which was performed on wind tunnel using NACA0018 aerofoil. The results are then presented graphically, showing pressure and velocity distributions lift and drag coefficients for the different cases which will be useful for design of automotive body structures.
Technical Paper

Modelling and Analysis of Variable Displacement Oil Pump for Automobile Applications

2018-07-09
2018-28-0080
The present world persists with a twin crisis of energy consumption and the environmental degradation. Finding a compromise between them provides a breakthrough in the research in energy containments of the engine attachments. Oil pump has role of providing the transmission of oil to other engine parts and acts as the coolant for the moving parts. Conventional oil pump with pressure relief valve is its loss lot of energy in oil re-circulation due to the discharge effect. On contrary, the variable displacement oil pump has an effect on reduction of oil pressure using eccentric ring without having any compromise with the energy consumption. This paper proposes model and experimental methodology of a variable displacement Gerotor oil pump for lubricating the internal combustion engine. This particular unit is performed extremely in terms of rotational speed, delivery pressure and displacement variation.
Technical Paper

Modeling and Simulation for Hybrid Electric Vehicle with Parallel Hybrid Braking System for HEV

2018-07-09
2018-28-0097
A model for Hybrid electric vehicle power train with parallel hybrid braking system has been constructed. The hybrid vehicle utilized is based on integrated motor assist power train developed by Honda co utilized in Honda Insight car. The model is implemented using empirical formulation and power control schemes. A power control strategy based on throttle position (% throttle) and brake pedal position (% braking) is used. It incorporates the parallel hybrid braking system for the hybrid electric vehicle. The model allows for real time evaluation of wide range of parameters in vehicle operation as HEV without parallel hybrid braking system (PHBS) and with PHBS. Due to regenerative braking the structure design and control of braking system for HEV is different from conventional vehicle. The PHBS is the good option to provide safety of the vehicle and simultaneously recover reasonable amount of braking energy.
Technical Paper

Theoretical Analysis of High Thermal Conductivity Polymer Composite Fin Based Automotive Radiator under Forced Convection

2018-07-09
2018-28-0099
Though high thermal conductivity polymer composites are prepared based on the thermal requirements, the effectiveness and overall heat transfer performance of the radiators have to be addressed comprehensively to validate the concerned efforts taken to prepare the high thermal conductivity polymer composites. In this article, theoretical analysis on the thermal performance of the cross flow type heat exchanger under convection is performed only by concentrating on the term thermal conductivity of the material. Micro channel based geometry is extracted from the given heat exchanger problem to reduce the complexities of simulation. The term cooling system performance index (CSPI) is used to achieve the expected targets in the present investigation. For shorter fins, the effect of thermal conductivity on the cooling system performance index under lower Reynolds number is insignificant.
X