Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

2009-10-06
2009-01-2920
This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Journal Article

Comparison of the Performance of 7-Post and 8-Post Dynamic Shaker Rigs for Vehicle Dynamics Studies

2008-12-02
2008-01-2966
This paper documents a simple theoretical analysis and an experimental performance comparison of the advantages of an 8-post shaker rig relative to a conventional 7-post shaker rig. A simple static model describing the chassis roll and warp characteristics is first presented to illustrate the differences between 7-post and 8-post configurations, and the conditions where an additional aeroloader provides an advantage. Using a late model NASCAR Sprint Cup car, a series of experimental tests were conducted with the 8-post shaker rig at the Virginia Institute for Performance Engineering and Research (VIPER) facility in both 7-post and 8-post configurations. Experimental results confirm the hypothesis that an 8-post configuration is able to more accurately reproduce target motions of the chassis and suspension when those motions include a chassis warp condition.
X