Refine Your Search

Topic

Author

Search Results

Journal Article

Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

2014-01-15
2013-01-9092
Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg−1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Journal Article

Using Performance Margin and Dynamic Simulation for Location Aware Adaptation of Vehicle Dynamics

2013-04-08
2013-01-0703
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Performance Margin (PM) is defined in this work as the ratio of the required tractive effort to the available tractive effort for the front and rear respectively. This simple definition stems from and incorporates many traditional handling metrics and is robust in its scope of applicability. The PM is implemented in an Intervention Strategy demonstrating its use to avoid situations in which the vehicle exceeds its handling capabilities. Results from a design case study are presented to show the potential efficacy of developing a PM-based control system.
Technical Paper

Separation Techniques for Auto Shredder Residue

1991-02-01
910854
Disposal of automobile shredder residue (ASR), remaining from the reclamation of steel from junked automobiles, promises to be an increasing environmental and economic concern. Argonne National Laboratory (ANL) is investigating alternative technology for recovering value from ASR while also, it is hoped, lessening landfill disposal concerns. Of the ASR total, some 20% by weight consists of plastics. Preliminary work at ANL is being directed toward developing a protocol, both mechanical and chemical (solvent dissolution), to separate and recover polyurethane foam and the major thermoplastic fraction from ASR. Feasibility has been demonstrated in laboratory-size equipment.
Technical Paper

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

2020-04-14
2020-01-0770
Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

Recent Developments in X-ray Diagnostics for Cavitation

2015-04-14
2015-01-0918
Cavitation plays an important role in fuel injection systems. It alters the nozzle's internal flow structure and discharge coefficient, and also contributes to injector wear. Quantitatively measuring and mapping the cavitation vapor distribution in a fuel injector is difficult, as cavitation occurs on very short time and length scales. Optical measurements of transparent model nozzles can indicate the morphology of large-scale cavitation, but are generally limited by the substantial amount of scattering that occurs between vapor and liquid phases. These limitations can be overcome with x-ray diagnostics, as x-rays refract, scatter and absorb much more weakly from phase interfaces. Here, we present an overview of some recent developments in quantitative x-ray diagnostics for cavitating flows. Measurements were conducted at the Advanced Photon Source at Argonne National Laboratory, using a submerged plastic test nozzle.
Technical Paper

Technologies for Recycling Shredder Residue

2007-04-16
2007-01-0526
Recovering metals from obsolete automobiles, home appliances, and other metal-containing obsolete durables and other scrap involves shredding these objects and separating the reusable metals from the shredded material by using magnets, eddy current separators, and metal detectors. Over 12 million automobiles are shredded annually in the United States alone, and almost all of the 4.5 million metric tonnes (5 million short tons) of the shredder residue produced in the United States annually is disposed of in landfills. Over 13.6 million tonnes (15 million tons) of shredder residue is generated worldwide every year. The rise in disposal costs is further exacerbated in that the percentage of shredder residue that must be disposed of, in comparison with the percentage of marketable recovered metals, is increasing because of the increasing content of polymers in automobiles and in home appliances.
Technical Paper

Modeling of Failure Modes Induced by Plastic Strain Localization in Dual Phase Steels

2008-04-14
2008-01-1114
Microstructure level inhomogeneities between the harder martensite phase and the softer ferrite phase render the dual phase (DP) steels more complicated failure mechanisms and associated failure modes compared to the conventionally used low alloy homogenous steels. This paper examines the failure mode DP780 steel under different loading conditions using finite element analyses on the microstructure levels. Micro-mechanics analyses based on the actual microstructures of DP steel are performed. The two-dimensional microstructure of DP steel was recorded by scanning electron microscopy (SEM). The plastic work hardening properties of the ferrite phase was determined by the synchrotron-based high-energy X-ray diffraction technique. The work hardening properties of the martensite phase were calibrated and determined based on the uniaxial tensile test results. Under different loading conditions, different failure modes are predicted in the form of plastic strain localization.
Technical Paper

Impact of Advanced Technologies on Medium-Duty Trucks Fuel Efficiency

2010-10-05
2010-01-1929
Rising fuel costs, increased regulations, and heightened customer sensitivity to energy efficiency has prompted the evaluation of numerous powertrain technology improvements to introduce into production. The actual impact of such technologies can differ broadly, depending on the technology or application. To evaluate the fuel consumption impact, various baseline vehicles have been created and simulated by using Argonne National Laboratory's vehicle modeling and simulation tool, the Powertrain Systems Analysis Toolkit (PSAT). This paper provides a quantitative evaluation of several technologies or combinations of technologies. First, we assess the impact of single technologies, including vehicle/chassis characteristics, such as weight, aerodynamics, or rolling resistance. Next, we consider advanced powertrain technologies, ranging from dieselization to transmissions with a higher gear number, and hybridization.
Technical Paper

Challenges in Reforming Gasoline: All Components are Not Created Equal

2001-05-07
2001-01-1915
Gasoline is a complex fuel. Many of the constituents of gasoline that are beneficial for the internal combustion engine (ICE) are expected to be challenging for on-board reformers in fuel-cell vehicles. To address these issues, the autothermal reforming of gasoline and individual components of gasoline has been investigated. The results indicate that aromatic components require higher temperatures and longer contact times to reform than paraffinic components. Napthenic components require higher temperatures to reform, but can be reformed at higher space velocities than paraffinic components. The effects of sulfur are dependent on the catalyst. These results suggest that further evolution of gasoline could reduce the demands on the reformer and provide a better fuel for a fuel-cell vehicle.
Technical Paper

The New PNGV System Analysis Toolkit PSAT V4.1 - Evolution and Improvement

2001-08-20
2001-01-2536
Argonne National Laboratory (ANL), working with the Partnership for a New Generation of Vehicles (PNGV), maintains hybrid vehicle simulation software, the PNGV System Analysis Toolkit (PSAT). PSAT, originally proprietary, has been used by both DOE and the “Big Three” as a modeling tool. The number of PSAT users has increased recently because 15 universities participating in the 2001 FutureTruck competition were given the software for their use. PSAT allows companies to look at new types of vehicles (hybrids) and choose the best configuration according to customer expectations within a minimum of time. PSAT, a forward-looking model, allows the user to simulate a large number of different configurations (conventional, series, parallel, and power split). PSAT is well suited for development of control strategies; by using accurate dynamics component models as its code, PSAT can be implemented directly and tested at the bench scale or in a vehicle.
Technical Paper

Numerical and Optical Evolution of Gaseous Jets in Direct Injection Hydrogen Engines

2011-04-12
2011-01-0675
This paper performs a parametric analysis of the influence of numerical grid resolution and turbulence model on jet penetration and mixture formation in a DI-H2 ICE. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located single-hole injector nozzle. The simulation includes the intake and exhaust port geometry, in order to account for the actual flow field within the cylinder when injection of hydrogen starts. A reduced geometry is then used to focus on the mixture formation process. The numerically predicted hydrogen mole-fraction fields are compared to experimental data from quantitative laser-based imaging in a corresponding optically accessible engine. In general, the results show that with proper mesh and turbulence settings, remarkable agreement between numerical and experimental data in terms of fuel jet evolution and mixture formation can be achieved.
Technical Paper

Numerical Simulation of a Direct-Acting Piezoelectric Prototype Injector Nozzle Flow for Partial Needle Lifts

2017-09-04
2017-24-0101
Actual combustion strategies in internal combustion engines rely on fast and accurate injection systems to be successful. One of the injector designs that has shown good performance over the past years is the direct-acting piezoelectric. This system allows precise control of the injector needle position and hence the injected mass flow rate. Therefore, understanding how nozzle flow characteristics change as function of needle dynamics helps to choose the best lift law in terms of delivered fuel for a determined combustion strategy. Computational fluid dynamics is a useful tool for this task. In this work, nozzle flow of a prototype direct-acting piezoelectric has been simulated by using CONVERGE. Unsteady Reynolds-Averaged Navier-Stokes approach is used to take into account the turbulence. Results are compared with experiments in terms of mass flow rate. The nozzle geometry and needle lift profiles were obtained by means of X-rays in previous works.
Technical Paper

Long Term Impact of Vehicle Electrification on Vehicle Weight and Cost Breakdown

2017-03-28
2017-01-1174
Today’s value proposition of plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) remain expensive. While the cost of lithium batteries has significantly decreased over the past few years, more improvement is necessary for PHEV and BEV to penetrate the mass market. However, the technology and cost improvements of the primary components used in electrified vehicles such as batteries, electric machines and power electronics have far exceeded the improvements in the main components used in conventional vehicles and this trend is expected to continue for the foreseeable future. Today’s weight and cost structures of electrified vehicles differ substantially from that of conventional vehicles but that difference will shrink over time. This paper highlights how the weight and cost structures, both in absolute terms and in terms of split between glider and powertrain, converge over time.
Technical Paper

Comparison between Rule-Based and Instantaneous Optimization for a Single-Mode, Power-Split HEV

2011-04-12
2011-01-0873
Over the past couple of years, numerous Hybrid Electric Vehicle (HEV) powertrain configurations have been introduced into the marketplace. Currently, the dominant architecture is the power-split configuration, notably the input splits from Toyota Motor Sales and Ford Motor Company. This paper compares two vehicle-level control strategies that have been developed to minimize fuel consumption while maintaining acceptable performance and drive quality. The first control is rules based and was developed on the basis of test data from the Toyota Prius as provided by Argonne National Laboratory's (Argonne's) Advanced Powertrain Research Facility. The second control is based on an instantaneous optimization developed to minimize the system losses at every sample time. This paper describes the algorithms of each control and compares vehicle fuel economy (FE) on several drive cycles.
Technical Paper

Using Modeling and Simulation to Support Future Medium and Heavy Duty Regulations

2011-01-19
2011-26-0048
Other than in Japan, medium and heavy duty vehicles (MHDVs) are not regulated despite accounting for a significant portion of the fuel consumed (about 26% in the US in 2008). Government agencies worldwide are currently evaluating options to address that issue. Due to the large number of vehicle applications, some of them being “one of a kind”, vehicle modelling and simulation offers an attractive solution to medium and heavy duty regulations. This paper discusses the advantages and challenges of vehicle simulation to support regulations.
X