Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessment of High-Temperature Encapsulants for Planar Packages

2010-11-02
2010-01-1729
Seven encapsulants with operating temperatures up to 250°C were surveyed for use in planar packages for wide-bandgap dice. Two of the encapsulants failed processability test because they were not able to flow, and another two failed because they induced voids or cracks after curing. The dielectric results of the remaining three encapsulants showed that both dielectric strength and permittivity decreased almost 40% when the temperature was increased up to 250°C. As the three encapsulants were used to encapsulate a power module, it was proven that all of them could protect the package from early breakdown caused by the poor dielectric strength of air.
Technical Paper

Reheating and Sterilization Technology for Food, Waste and Water: Design and Development Considerations for Package and Enclosure

2005-07-11
2005-01-2926
Long-duration space missions require high-quality, nutritious foods, which will need reheating to serving temperature, or sterilization on an evolved planetary base. The package is generally considered to pose a disposal problem after use. We are in the process of development of a dual-use package wherein the food may be rapidly reheated in situ using the technology of ohmic heating. We plan to make the container reusable, so that after food consumption, the package is reused to contain and sterilize waste. This approach will reduce Equivalent System Mass (ESM) by using a compact heating technology, and reducing mass requirements for waste storage. Preliminary tests of the package within a specially-designed ohmic heating enclosure show that ISS menu item could easily be heated using ohmic heating technology. Mathematical models for heat transfer were used to optimize the layout of electrodes to ensure uniform heating of the material within the package.
X