Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Development of a Model for the Study of Head Injury

1967-02-01
670923
Experiments have revealed that the brain of the experimental animal behaves elastically in response to dynamic forces in situ. The response of the skull of the human cadaver has been investigated by means of static load-deflection tests and impact and mechanical impedance tests. This information has been used to construct a two-dimensional head model consisting of a polyester resin shell reinforced with fiberglas with plexiglass sides; a clear silicone gel brain; and spinal cord simulated by a plexiglass tube containing silicone gel supported by a piston-spring assembly. Several frames taken from motion pictures recorded at 7,000 frames/sec. show how pressure gradients in the model are displayed by observing the growth and location of bubbles during impact.
Technical Paper

Testing the Validity and Limitations of the Severity Index

1970-02-01
700901
The head acceleration pulses obtained from monkey concussion, cadaver skull fracture (t = 0.002 sec), and football helmet experiments (0.006< t< 0.011 sec) have been subjected to injury hazard assessment by the Severity Index method. Although not directly applicable, the method correlates well with degree of monkey concussion. The range of Severity Indices for acceleration pulses obtained during impact to nine cadavers, all of which produced a linear fracture, was 540-1760 (1000 is danger to life) with a median value of 910. The helmet experiments showed good correlation between the Severity Index and the Wayne State University tolerance curve. These helmet tests also showed that a kinematics chart with curves of velocity change, stopping distance, average head acceleration, and time, with a superimposed Wayne State tolerance curve, can be useful in injury assessment.
X