Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Humidity Effects on a Carbon Hydrocarbon Adsorber

2009-04-20
2009-01-0873
Because combustion engine equipped vehicles must conform to stringent hydrocarbon (HC) emission requirements, many of them on the road today are equipped with an engine air intake system that utilizes a hydrocarbon adsorber. Also known as HC traps, these devices capture environmentally dangerous gasoline vapors before they can enter the atmosphere. A majority of these adsorbers use activated carbon as it is cost effective and has excellent adsorption characteristics. Many of the procedures for evaluating the adsorbtive performance of these emissions devices use mass gain as the measurand. It is well known that activated carbon also has an affinity for water vapor; therefore it is useful to understand how well humidity must be controlled in a laboratory environment. This paper outlines investigations that were conducted to study how relative humidity levels affect an activated carbon hydrocarbon adsorber.
Technical Paper

Inaudible Knock and Partial-Burn Detection Using In-Cylinder Ionization Signal

2003-10-27
2003-01-3149
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. Maximizing engine power and fuel economy is limited by engine knock for a given air-to-fuel charge. Therefore, the ability to detect engine knock and run the engine at its knock limit is a key for the best power and fuel economy. This paper shows inaudible knock detection ability using in-cylinder ionization signals over the entire engine speed and load map. This is especially important at high engine speed and high EGR rates. The knock detection ability is compared between three sensors: production knock (accelerometer) sensor, in-cylinder pressure and ionization sensors. The test data shows that the ionization signals can be used to detect inaudible engine knock while the conventional knock sensor cannot under some engine operational conditions.
Technical Paper

Fuel Rail Pressure Relief

2006-04-03
2006-01-0626
A major source of engine-off evaporative hydrocarbon emissions is fuel injector leakage. Methods and devices to relieve fuel rail pressure after key-off, and thus reduce leakage are introduced. Impact on fuel manifold re-pressurization is considered. The basic principles governing this behavior: fuel thermal expansion, fuel vapor pressure, and dissolved gasses in liquid are elaborated. Fuel pressure relief data is shown.
Technical Paper

Requirements Setting, Optimization and “Best Fit” Application of AIS Hydrocarbon Adsorption Devices for Engine Evaporative Emissions Breathing Loss Control

2005-04-11
2005-01-1104
To control engine intake evaporative emissions, or “breathing losses”, functions of both Fuel Vapor Storage and Air Induction Systems must be understood. The merging of these diverse systems results in a functional requirements set that is very broad in scope. Several known devices for controlling engine evaporative emissions breathing losses are reviewed and compared. Experimental methods of measuring and estimating hydrocarbon adsorption, approximated by n-butane, are shown, some utilizing scaled laboratory sample units. HC capture efficiency, capacity, flow losses and other performance characteristics of the various devices are then optimally matched to the numerous system needs. Thus, emission control requirements are met, while cost and deleterious effects are minimized, resulting in high level optimal systems.
Technical Paper

IC Engine Retard Ignition Timing Limit Detection and Control using In-Cylinder Ionization Signal

2004-10-25
2004-01-2977
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. However, the usable range of ignition timing is often limited by knock in the advance direction and by combustion instability (partial burn and misfire) in the retard direction. This paper details a retard limit management system utilizing ionization signals in order to maintain the desired combustion quality and prevent the occurrence of misfire without using fixed limits. In-cylinder ionization signals are processed to derive a metric for combustion quality and closeness of combustion to partial burn/misfire limit, which is used to provide a limiting value for the baseline ignition timing in the retard direction. For normal operations, this assures that the combustion variability is kept within an acceptable range.
X