Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap

2004-03-08
2004-01-0944
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. This implementation requires only minor modifications of the standard SI engine and allows SI operation outside the operating range of HCCI. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. A heat exchanger is utilized to heat or cool the intake air, not as a means of combustion control but in order to simulate realistic variations in ambient temperature. The combustion is monitored in real time using cylinder pressure sensors. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. However, for a practical application the intake temperature will vary both geographically and from time to time.
Technical Paper

A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline

2001-09-24
2001-01-3610
A single cylinder, naturally aspirated, four-stroke and camless (Otto) engine was operated in homogeneous charge compression ignition (HCCI) mode with commercial gasoline. The valve timing could be adjusted during engine operation, which made it possible to optimize the HCCI engine operation for different speed and load points in the part-load regime of a 5-cylinder 2.4 liter engine. Several tests were made with differing combinations of speed and load conditions, while varying the valve timing and the inlet manifold air pressure. Starting with conventional SI combustion, the negative valve overlap was increased until HCCI combustion was obtained. Then the influences of the equivalence ratio and the exhaust valve opening were investigated. With the engine operating on HCCI combustion, unthrottled and without preheating, the exhaust valve opening, the exhaust valve closing and the intake valve closing were optimized next.
Technical Paper

ISG (Integrated Starter/Generator)

1992-02-01
920158
The object with this paper is to give performance data for an ISG (Integrated Starter/Generator) which is mounted around the flywheel. With regard to weight, the ISG concept shall be competitive compared to a system with conventional components. The comparison will be based on a 48 V DC-system, and performed for a vehicle which is heavily equipped with electrical loads. The paper focuses on the electrical machine in the ISG (which is of induction type). The convertor is only covered in brief. For design of the start system, a computer program for simulation of a start sequence is used. Models implemented in the program will be discussed. A simplified equation for the load torque during cranking will be explained. For design of the generator system, two different drive cycles will be discussed. One is more related to the traditional load-balance situation during city driving, and the other related to the new load-balance obtained with the characteristic of an induction machine.
Technical Paper

The Volvo 3-Litre 6-Cylinder Engine with 4-Valve Technology

1990-09-01
901715
During 1990, the Volvo Car Corporation will Introduce a new In-line six-cylinder engine featuring three litre displacement, twin overhead camshafts and 24 valves, designated the B6304F. The engine has been designed and adapted for Volvo's top-of-the-line model 960, and it has been developed to meet the market's high demands on comfort, performance, reliability, economy and environmental friendliness. The engine has been designed and manufactured with the help of advanced CAE technology. The engine structure consists of five basic aluminium parts. This construction contributes to the low engine weight of 182 kg including auxiliary units, oil and wiring. The engine's gas flow has been optimized with the help of data simulation and laser measurement technology so as to ensure efficient utilization of energy. Fuel injection and ignition timing are regulated and controlled by an advanced electronic control system, the Bosch Motronic 1.8.
Technical Paper

Understanding the CCVS Stratified EGR Combustion System

1996-02-01
960837
A system for stratifying recycled exhaust gas (EGR) to substantially increase dilution tolerance has been applied to a port injected four-valve gasoline engine. This system, known as Combustion Control through Vortex Stratification (CCVS), has shown greatly improved fuel consumption at a stoichiometric air/fuel ratio. Both burnrate (10-90% burn angle) and HC emissions are almost completely insensitive to EGR up to best economy EGR rate. Cycle to cycle combustion variation is also excellent with a coefficient of variation of IMEP of less than 2% at best economy EGR rate. This paper describes a research programme aimed at gaining a better understanding of the in-cylinder processes in this combustion system.
Technical Paper

Measurement of Fuel Droplet Dynamics in the Inlet Port of an S.I. Engine Under Firing Conditions

1996-10-01
961924
Cycle resolved fuel droplet dynamics measurements in the inlet port of an S.I. engine were performed under firing conditions in order to study real dynamic effects in the fuel flow to the engine. A Phase Doppler Particle Analyzer (PDPA) was used to detect the droplet size and velocity. The optical access was through a glass window in the bottom of the intake channel. The PDPA was synchronised with the engine combustion cycle in order to study the results in the engine frequency domain. The measurements were performed over the cross section of the channel. Different injection timing and engine running conditions were investigated, using standard unleaded gasoline. The results show that, during the camshaft's overlap period, there exists a “push-back” droplets effect, due to the pressure difference between the inlet manifold and the cylinder, that transports droplets far back in the inlet manifold.
Technical Paper

The Turbocharged and Intercooled 2.3 Liter Engine for the Volvo 760

1984-02-01
840253
In 1981 Volvo launched the 2.1L turbocharged engine for the 240 model. Since then, the market interest for turbocharged engines has increased rapidly and along with this the demand for more efficient engines. The use of intercooler and micro-computer controlled fuel- and ignition systems in passenger car applications made it possible to develop a second generation of turbocharged engines with the capability to meet these demands. This paper describes the 2.3L turbocharged engine and its development for the US-version of the 1984 760 model.
Technical Paper

A Method to Evaluate the Compression Ratio in IC Engines with Porous Thermal Barrier Coatings

2018-09-10
2018-01-1778
The compression ratio is an important engine design parameter. It determines to a large extend engine properties like the achievable efficiency, the heat losses from the combustion chamber and the exhaust losses. The same properties are affected by insulation of the combustion chamber. It is therefore especially important to know the compression ratio when doing experiments with thermal barrier coatings (TBC). In case of porous TBCs, the standard methods to measure the compression ratio can give wrong results. When measuring the compression ratio by volume, using a liquid, it is uncertain if the liquid fills the total porous volume of the coating. And for a thermodynamic compression ratio estimation, a model for the heat losses is needed, which is not available when doing experiments with insulation. The subject of this paper is the evaluation of an alternative method to assess the compression ratio.
Technical Paper

Homogeneous Lean Combustion in a 2lt Gasoline Direct Injected Engine with an Enhanced Turbo Charging System

2018-09-10
2018-01-1670
In the quest for a highly efficient, low emission and affordable source of passenger car propulsion system, meeting future demands for sustainable mobility, the concept of homogeneous lean combustion (HLC) in a spark ignited (SI) multi-cylinder engine has been investigated. An attempt has been made to utilize the concept of HLC in a downsized multi-cylinder production engine producing up to 22 bar BMEP in load. The focus was to cover as much as possible of the real driving operational region, to improve fuel consumption and tailpipe emissions. A standard Volvo two litre four-cylinder gasoline direct injected engine operating on commercial 95 RON gasoline fuel was equipped with an advanced two stage turbo charger system, consisting of a variable nozzle turbine turbo high-pressure stage and a wastegate turbo low-pressure stage. The turbo system was specifically designed to meet the high demands on air mass flow when running lean on higher load and speeds.
Technical Paper

Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine

2014-04-01
2014-01-1141
Heat transfer losses are one of the largest loss contributions in a modern internal combustion engine. The aim of this study is to evaluate the contribution of the piston bowl type and swirl ratio to heat losses and performance. A commercial CFD tool is used to carry out simulations of four different piston bowl geometries, at three engine loads with two different swirl ratios at each load point. One of the geometries is used as a reference point, where CFD results are validated with engine test data. All other bowl geometries are scaled to the same compression ratio and make use of the same fuel injection, with a variation in the spray target between cases. The results show that the baseline case, which is of a conventional diesel bowl shape, provides the best emission performance, while a more open, tapered, lip-less combustion bowl is the most thermodynamically efficient.
Technical Paper

PremAir® Catalyst System* - Long-term On-road Aging Results

2000-10-16
2000-01-2925
Recently Volvo Car Corporation introduced the new PremAir® catalyst system from Engelhard Corporation on their S80 luxury sedan and the new V70 estate wagon. In this paper, performance results of this catalyst system after long-term mileage accumulation will be presented. Urban taxi vehicles were used to test the catalyst over 110,000 miles. The rate of deactivation in long-term catalyst performance was found to be dependent on the radiator design, and was least for the radiator design with the highest total geometric surface area. Subsequently, a new catalyst version was developed in order to minimize the deactivation rate. This new catalyst has been evaluated under similar taxi driving conditions over 80,000 miles, and has shown improved durability performance.
X