Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Automotive Suspension Models Using Component Mobility Methodology

1993-05-01
931298
The mobility modeling technique is applied to the structure-borne noise path through a vehicle suspension. The model is developed using measured FRF data taken on the isolated components of the suspension and body structure of a midsize sedan. Several important modeling issues of suspensions are resolved. It was determined that multiple degrees of freedom are required to model the coupling at joints between the suspension and body structure. The investigation also demonstrated that bushings should not be included in the measurements used to develop these models and should be added later using simplified bushing parameters. The importance of transfer mobility information between the various suspension attachments was also investigated. The agreement between the mobility model predictions and the measured FRF data for the overall system is better than similar data published in the literature to date.
Technical Paper

Prediction and Verification of Energy Flow in a Structure Using an Energy Finite Element Approach

1995-05-01
951305
Wavenumber domain methods have been developed to experimentally determine the flexural group speeds and loss factors in beam elements and the flexural power transmission and reflection coefficients of joints in a structure. These techniques are used in this paper to measure uncertain information for an Energy Finite Element Method (EFEM) model of a ladder frame structure. The loss factors and group speeds in each element in the structure were measured and found to compare well with the analytical predictions. However, the flexural power transmission and reflection coefficients of the joints in the structure were found to be significantly different from analytically predicted values. EFEM predictions and measured velocities for several components are compared.
Technical Paper

A Predictive Model for the Interior Pressure Oscillations from Flow Over Vehicle Openings

1997-05-20
971906
An analytical model based on “vortex sound” theory was investigated for predicting the frequency, the relative magnitude, the onset, and the offset of self-sustained interior pressure fluctuations inside a vehicle with an open sunroof. The “buffeting” phenomenon was found to be caused by the flow-excited resonance of the cavity. The model was applied to investigate the optimal sunroof length and width for a mid-size sedan. The input parameters are the cavity volume, the orifice dimensions, the flow velocity, and one coefficient characterizing vortex diffusion. The analytical predictions were compared with experimental results obtained for a system which geometry approximated the one-fifth scale model of a typical vehicle passenger compartment with a rectangular, open sunroof. Predicted and observed frequencies and relative interior pressure levels were in good agreement around the “critical” velocity, at which the cavity response is near resonance.
Technical Paper

Pressure Fluctuations in a Flow-Excited Door Gap Cavity Model

1997-05-20
971923
The flow-induced pressure fluctuations in a door gap cavity model were investigated experimentally using a quiet wind tunnel facility. The cavity cross-section dimensions were typical of road vehicle door cavities, but the span was only 25 cm. One cavity wall included a primary bulb rubber seal. A microphone array was used to measure the cavity pressure field over a range of flow velocities and cavity configurations. It was found that the primary excitation mechanism was an “edge tone” phenomenon. Cavity resonance caused amplification around discrete frequencies, but did not cause the flow disturbances to lock-on. Possible fluid-elastic coupling related to the presence of a compliant wall was not significant. A linear spectral decomposition method was then used to characterize the cavity pressure in the frequency domain, as the product of a source spectral distribution function and an acoustic frequency response function.
Technical Paper

Control of Interior Pressure Fluctuations Due to Flow Over Vehicle Openings

1999-05-17
1999-01-1813
Grazing flows over open windows or sunroofs may result in “flow buffeting,” i.e. self-sustained flow oscillations at the Helmholtz acoustic resonance frequency of the vehicle. The associated pressure fluctuations may cause passenger fatigue and discomfort. Many solutions have been proposed to solve this problem, including for example leading edge spoilers, trailing edge deflectors, and leading edge flow diffusers. Most of these control devices are “passive” i.e. they do not involve dynamic control systems. Active control methods, which do require dynamic controls, have been implemented with success for different cases of flow instabilities. Previous investigations of the control of flow-excited cavity resonance have used mainly one or more loudspeakers located within the cavity wall. In this study, oscillated spoilers hinged near the leading edge of the cavity orifice were used. Experiments were performed using a cavity installed within the test section wall of a wind tunnel.
Journal Article

Reliable Infrastructural Urban Traffic Monitoring Via Lidar and Camera Fusion

2017-03-28
2017-01-0083
This paper presents a novel infrastructural traffic monitoring approach that estimates traffic information by combining two sensing techniques. The traffic information can be obtained from the presented approach includes passing vehicle counts, corresponding speed estimation and vehicle classification based on size. This approach uses measurement from an array of Lidars and video frames from a camera and derives traffic information using two techniques. The first technique detects passing vehicles by using Lidars to constantly measure the distance from laser transmitter to the target road surface. When a vehicle or other objects pass by, the measurement of the distance to road surface reduces in each targeting spot, and triggers detection event. The second technique utilizes video frames from camera and performs background subtraction algorithm in each selected Region of Interest (ROI), which also triggers detection when vehicle travels through each ROI.
X