Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental Assessments of Parallel Hybrid Medium-Duty Truck

2014-05-20
2014-01-9021
Fuel consumption reduction on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The Crankshaft-Integrated-Starter-Generator (C-ISG) is one of the parallel hybrid propulsions to improve the fuel economy. The C-ISG configuration is attractive because one electric machine can be used to propel the vehicle, to start the engine, and to be function as a generator. The C-ISG has been implemented in one M1083A1 5-ton tactical cargo truck. This paper presents the experimental assessments of the C-ISG hybrid truck characteristics. The experimental assessments include all electric range for on- and off-road mission cycles and fuel consumption for the high voltage battery charging. Stationary tests related to the charging profile of the battery pack and the silent watch time duration is also conducted.
Journal Article

Modeling and Validation of Rapid Prototyping Related Available Workspace

2014-04-01
2014-01-0751
Path planning and re-planning for serial 6 degree of freedom (DOF) robotic systems is challenging due to complex kinematic structure and application conditions which affects the robot's tool frame position, orientation and singularity avoidance. These three characteristics represent the key elements for production planning and layout design of the automated manufacturing systems. The robot trajectory represents series of connected points in 3D space. Each point is defined with its position and orientation related to the robot's base frames or predefined user frame. The robot will move from point to point using the desired motion type (linear, arc, or joint). The trajectory planning requires first to check if robot can reach the selected part(s). This can be simply done by placing the part(s) inside the robot's work envelope. The robot's work envelope represents a set of all robots' reachable points without considering their orientation.
Technical Paper

Step by Step Conversion of ICE Motorcycle to a BEV Configuration

2020-04-14
2020-01-1436
With the mass movement toward electrification and renewable technologies, the scope of innovation of electrification has gone beyond the automotive industry into areas such as electric motorcycle applications. This paper provides a discussion of the methodology and complexities of converting an internal combustion motorcycle to an electric motorcycle. In developing this methodology, performance goals including, speed limits, range, weight, charge times, as well as riding styles will be examined and discussed. Based on the goals of this paper, parts capable of reaching the performance targets are selected accordingly. Documentation of the build process will be presented along with the constraints, pitfalls, and difficulties associated with the process of the project. The step-by-step process that is developed can be used as a guideline for future build and should be used as necessary.
Journal Article

Methods for Evaluating the Functional Work Space for Machine Tools and 6 Axis Serial Robots

2016-04-05
2016-01-0338
The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Journal Article

Static and Dynamic Instabilities of Electrostatic Actuated MEMS Devices

2008-04-14
2008-01-0915
Fast and accurate characterization of stability regions and operational range with respect to pull-in voltage and displacement is critical in the design and development of MEMS resonators and switches. This paper presents a mathematical and computational procedure for modeling and analysis of static and dynamic instabilities of capacitive microdevices employing resonant microbeams. The mathematical model consists of a nonlinear microbeam under distributed electrostatic actuation and squeeze film damping. The coupled system is described by the nonlinear beam equation and a modified compressible Reynolds equation to account for the rarefied gas in the narrow gap between the microbeam and substrate. The Differential Quadrature Method (DQM) is used to discretize partial differential equations of motion and solve for static deflection, natural frequencies, static pull-in voltage, and quality factors for various encapsulation air pressures and applied DC voltages.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Journal Article

Jaw Loading Response of Current ATDs

2009-04-20
2009-01-0388
Biomechanical surrogates are used in various forms to study head impact response in automotive applications and for assessing helmet performance. Surrogate headforms include those from the National Operating Committee on Standards for Athletic Equipment (NOCSAE) and the many variants of the Hybrid III. However, the response of these surrogates to loading at the chin and how that response may affect the loads transferred from the jaw to the rest of the head are unknown. To address part of that question, the current study compares the chin impact response performance of select human surrogates to that of the cadaver. A selection of Hybrid III and NOCSAE based surrogates with fixed and articulating jaws were tested under drop mass impact conditions that were used to describe post mortem human subject (PMHS) response to impacts at the chin (Craig et al., 2008). Results were compared to the PMHS response with cumulative variance technique (Rhule et al., 2002).
Journal Article

Shell Elements Based Parametric Modeling Method in Frame Robust Design and Optimization

2011-04-12
2011-01-0508
Shell Elements based Parametric Frame Modeling is a powerful CAE tool, which can generate robust frame design concept optimized for NVH and durability quickly when combined with Taguchi Design of Experiments. The scalability of this modeling method includes cross members length/location/section/shape, frame rail segments length/section and kick in/out/up/down angle, and access hole location & size. In the example of the D. O. E. study, more than fifteen parameters were identified and analyzed for frequency and weight. The upper and lower bounds were set for each design parameter based on package and manufacturing constraints. Sixteen Finite Element frame were generated by parametrically updating the base model, which shows this modeling method is comparatively convenient. Sensitivity of these sixteen parameters to the frequency and weight was summarized through statics, so the favorable design alternative can be achieved with the major parameters' combination.
Journal Article

An Innovative Modeling Approach to Thermal Management using Variable Fidelity Flow Network Models Imbedded in a 3D Analysis

2011-04-12
2011-01-1048
Speed and accuracy are the critical needs in software for the modeling and simulation of vehicle cooling systems. Currently, there are two approaches used in commercially available thermal analysis software packages: 1) detailed modeling using complex and sophisticated three-dimensional (3D) heat transfer and computational fluid dynamics, and 2) rough modeling using one-dimensional (1D) simplistic network solvers (flow and thermal) for quick prediction of flow and thermal fields. The first approach offers accuracy at the cost of speed, while the second approach provides the simulation speed, sacrificing accuracy and can possibly lead to oversimplification. Therefore, the analyst is often forced to make a choice between the two approaches, or find a way to link or couple the two methods. The linking between one-dimensional and three-dimensional models using separate software packages has been attempted and successfully accomplished for a number of years.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Today’s advanced vehicles have high degree of interaction due to numerous sensors, actuators and also with complex communication within the control units. In order to hack a vehicle, it has to be within a certain range of communication. Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure. The results discussed here focus on the first detection method that is Cyber-Attack detection algorithm.
Technical Paper

Lower Temperature Limits for Cold Starting of Diesel Engine with a Common Rail Fuel Injection System

2007-04-16
2007-01-0934
One of the most challenging problems in diesel engines is to reduce unburned HC emissions that appear as (white smoke) during cold starting. In this paper the research is carried out on a 4-cylinder diesel engine with a common rail fuel injection system, which is able to deliver multiple injections during cold start. The causes of combustion failure at lower temperature limits are investigated theoretically by considering the rate of heat release. The results of this clearly indicate that in addition to low cranking engine speed, heat transfer and blow-by losses at lower ambient temperatures, fuel injection events would contribute to the failure of combustion. Also, combustion failure takes place when the compression temperature is lower than some critical value. Based on these results, split-main injection strategy was applied during engine cold starting and validated by experiments in a cold room at lower ambient temperatures.
Technical Paper

Occupant Compartment Updates for Side to Side Vibration in a Fuel Funny Car

2008-12-02
2008-01-2969
Nitro Fuel Funny cars have 7-8,000 hp and travel 330 mph in a quarter mile. These cars experience extreme forces in normal operation. One phenomenon familiar to drag racers is tire shake. Mild cases can cause loss of traction and vision. Extreme cases can cause injury or death. In March of 2007, a study and subsequent revision of the passenger compartment in a Fuel Funny car was performed after a fatal accident due to extreme tire shake. Tire shake on a drag race car normally occurs when the force on the rear tire causes the tire to roll over itself causing a loss of traction and side-to-side vibration. In other cases, if the tire fails at high speed, the tire may partially separate, causing an extreme vibration in the cockpit of the car. The vibration may set up a harmonic in the chassis, which is transferred to the driver since the rear end is bolted directly to the chassis with no suspension to absorb the energy.
Technical Paper

Active Damping of Engine Idle Speed Oscillation by Applying Adaptive Pid Control

2001-03-05
2001-01-0261
This paper investigates the use of an adaptive proportional-integral-derivative (APID) controller to reduce a combustion engine crankshaft speed pulsation. Both computer simulations and engine test rig experiments are used to validate the proposed control scheme. The starter/alternator (S/A) is used as the actuator for engine speed control. The S/A is an induction machine. It produces a supplemental torque source to cancel out the fast engine torque variation. This machine is placed on the engine crankshaft. The impact of the slowly varying changes in engine operating conditions is accounted for by adjusting the APID controller parameters on-line. The APID control scheme tunes the PID controller parameters by using the theory of adaptive interaction. The tuning algorithm determines a set of PID parameters by minimizing an error function. The error function is a weighted combination of the plant states and the required control effort.
Technical Paper

Numerical Investigation of Active and Passive Cooling Systems of a Lithium-Ion Battery Module for Electric Vehicles

2016-04-05
2016-01-0655
In this work, a pseudo three-dimensional coupled thermal-electrochemical model is established to estimate the heat generation and temperature profiles of a lithium ion battery as functions of the state of the discharge. Then, this model is used to investigate the effectiveness of active and passive thermal management systems. The active cooling system utilizes cooling plate and water as the working fluid while the passive cooling system incorporates a phase change material (PCM). The thermal effects of coolant flow rate examined using a computational fluid dynamics model. In the passive cooling system, Paraffin wax used as a heat dissipation source to control battery temperature rise. The effect of module size and battery spacing is studied to find the optimal weight of PCM required. The results show that although the active cooling system has the capability to reduce the peak temperatures, it leads to a large temperature difference over the battery module.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

Institute for Manufacturing Research, Wayne State University

1998-05-12
981345
The purpose of the Institute for Manufacturing Research (IMR) is to enhance Wayne State University's existing technological strength in the areas of manufacturing research which have demonstrated potential benefits for the State's economy. IMR's faculty conduct basic and applied research in selected areas of manufacturing science. The research programs within the Institute are broadly interdisciplinary and industrially interactive, and are organized around the following areas: materials development, modification, and nondestructive evaluation; software technology for manufacturing and engineering; and product reliability and machine tool research. Faculty from eight departments within the Colleges of Science and Engineering participate in IMR.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

Diagnostics of Engine Noise During Run-up Using HELS Based Nearfield Acoustical Holography

2005-05-16
2005-01-2505
This paper describes the diagnostics of noise sources and characteristics of a full-size gasoline engine during its run-up using Helmholtz Equation Least Squares (HELS) method based nearfield acoustical holography (NAH). The acoustic pressures are measured using an array of 56 microphones conformal to the contours of engine surfaces at very close range. Measurements are collected near the oil pan, front and intake sides. The data thus collected are taken as input to HELS program, and the acoustic pressure mappings on the oil pan, front and intake surfaces are calculated. These reconstructed acoustic quantities clearly demonstrate the “hot spots” of sound pressures generated by this gasoline engine during its run-up and under a constant speed condition. These acoustic pressure mappings together with order-tracking spectrograms allow for identification of the peak amplitudes of acoustic pressures on a targeted surface as a function of the frequency and engine rpm.
X