Refine Your Search

Topic

Search Results

Journal Article

The Influence of Accelerator Pedal Position Control during Transient Laboratory Testing on Heavy Duty Diesel Engines

2009-04-20
2009-01-0619
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Heat Release and Emission Characteristics of B20 Biodiesel Fuels During Steady State and Transient Operation

2008-04-14
2008-01-1377
Biodiesel fuels benefit both from being a renewable energy source and from decreasing in carbon monoxide (CO), total hydrocarbons (THC), and particulate matter (PM) emissions relative to petroleum diesel. The oxides of nitrogen (NOx) emissions from biodiesel blended fuels reported in the literature vary relative to baseline diesel NOx, with no NOx change or a NOx decrease found by some to an increase in NOx found by others. To explore differences in NOx, two Cummins ISM engines (1999 and 2004) were operated on 20% biodiesel blends during the heavy-duty transient FTP cycle and the steady state Supplemental Emissions Test. For the 2004 Cummins ISM engine, in-cylinder pressure data were collected during the steady state and transient tests. Three types of biodiesel fuels were used in the blends: soy, tallow (animal fat), and cottonseed. The FTP integrated emissions of the B20 blends produced a 20-35% reduction in PM and no change or up to a 4.3% increase in NOx over the neat diesel.
Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

Innovative Design Concepts for Lightweight Floors in Heavy Trailers

2010-10-05
2010-01-2033
Currently, the chassis assembly contributes about 73 percent of the overall weight of a 14.63 m long haul trailer. This paper presents alternative design concepts for the structural floor of a van trailer utilizing sandwich panels with various material and geometric characteristics of the core layer in order to reduce its weight significantly below that of the current design configuration. The main objective of the new designs is to achieve optimal tradeoffs between the overall structural weight and the flexural stiffness of the floor. Various preliminary design concepts of the core designs were compared on the basis of a single section of the core structure. Six different designs were analyzed by weight, maximum displacement and maximum stress under bending and torsion loads. Each concept was kept uniform by length, thickness, loading and boundary conditions. Each design concept was examined through testing of scaled model for floor assemblies.
Technical Paper

Performance Evaluation of Metal Matrix Composites Bolted Joints

2010-10-05
2010-01-2036
Recent advances in Metal Matrix Composites have made them ready for transition to large-volume production and commercialization. Such new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel. The increasing requirements of weight savings and extended durability motivated the potential application of MMC technology into the heavy vehicle market. However, significant technical barriers such as joining are likely to hinder the broad applications of MMC materials in heavy vehicles. The focus of this paper is to examine the feasibility of manufacturing and the behavior of bolted joint connections made from aluminum matrix reinforced with Silicon Carbide (SiC) particles. Two reinforcement ratios: 20% and 45% were considered in this study. The first part of the paper concentrates on experimental evaluation of bolted MMC joints.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

2013-09-08
2013-24-0181
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

A Study of Emissions from CNG and Diesel Fueled Heavy-Duty Vehicles

1993-10-01
932826
The West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory was employed to conduct chassis dynamometer tests in the field to measure the exhaust emissions from heavy-duty buses and trucks. This laboratory began operation in the field in January, 1992. During the period January, 1992 through June, 1993, over 150 city buses, trucks, and tractors operated by 18 different authorities in 11 states were tested by the facility. The tested vehicles were powered by 14 different types of engines fueled with natural gas (CNG or LNG), methanol, ethanol, liquified petroleum gas (LPG), #2 diesel, and low sulfur diesel (#1 diesel or Jet A). Some of the tested vehicles were equipped with exhaust after-treatment systems. In this paper, a total of 12 CNG-fueled and #2 diesel-fueled transit buses equipped with Cummins L-10 engines, were chosen for investigation.
Technical Paper

Measurement Delays and Modal Analysis for a Heavy Duty Transportable Emissions Testing Laboratory

1995-02-01
950218
Concern over atmospheric pollution has led to the development of testing procedures to evaluate the hydrocarbon, carbon dioxide, carbon monoxide and oxides of nitrogen emissions from internal combustion engines. In order to perform emissions testing on vehicles, a chassis dynamometer capable of simulating expected driving conditions must be employed. West Virginia University has developed a Heavy Duty Transportable Emissions Testing Laboratory to perform chassis testing on trucks and buses. Emissions from the vehicle are monitored and recorded over the duration of a testing schedule. Usually the vehicle emissions from the whole test are reported as mass of emissions per unit distance driven. However, there is interest in relating the instantaneous emissions to the immediate conditions at specific points in the test, and in determining the emissions for discrete segments of the test (modal analysis).
Technical Paper

Exhaust Emissions and Combustion Stability in a Bi-Fuel Spark Ignition Engine

1995-02-01
950468
A Saturn 1.9 liter engine has been converted for operation on either compressed natural gas or gasoline. A bi-fuel controller (BFC) that uses closed-loop control methods for both fuel delivery and spark advance has been developed. The performance and emissions during operation on each fuel have been investigated with the BFC, as well as the performance and emissions with the stock original equipment manufacturer (OEM) controller using gasoline. In-cylinder pressure was measured at a rate of 1024 points per revolution with piezoelectric pressure transducers flush-mounted in the cylinder head. The in-cylinder pressure was used in real time for ignition timing control purposes, and was stored by a data acquisition system for the investigation of engine stability and differences in the combustion properties of the fuels.
Technical Paper

Use of the West Virginia University Truck Test Cycle to Evaluate Emissions from Class 8 Trucks

1995-02-01
951016
Emissions from light duty vehicles have traditionally been measured using a chassis dynamometer, while heavy duty testing has been based on engine dynamometers. However, the need for in-use vehicle emissions data has led to the development of two transportable heavy duty chassis dynamometers capable of testing buses and heavy trucks. A test cycle has been developed for Class 8 trucks, which typically have unsyncronized transmissions. This test cycle has five peaks, each consisting of an acceleration, cruise period, and deceleration, with speeds and acceleration requirements that can be met by virtually all vehicles in common service. Termed the “WVU 5 peak truck test”, this 8 km (5 mile) cycle has been used to evaluate the emissions from diesel and ethanol powered over-the-road tractors and from diesel and ethanol powered snow plows, all with Detroit Diesel 6V92 engines.
Technical Paper

Comparative Emissions from Natural Gas and Diesel Buses

1995-12-01
952746
Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Typically, the transportable chassis dynamo meter is set up at a local transit agency and the selected buses are tested using the fuel in the vehicle at the time of the test. The dynamometer may be set up to operate indoors or outdoors depending on the space available at the site. Samples of the fuels being used at the site are collected and sent to the laboratory for analysis and this information is then sent together with emissions data to the Alternate Fuels Data Center at the National Renewable Energy Laboratory. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods.
Technical Paper

Transient Emissions Tests of Cummins N-14 Natural Gas Engine

1995-11-01
952653
A heavy-duty engine testing project involving Cummins Engine Company, Southwest Research Institute (SwRI), and West Virginia University (WVU) has been completed. This project evaluated the transient exhaust gas emissions rate of Cummins N-14 heavy-duty diesel engines converted to natural gas. Three heavy-duty N-14 diesel engines were converted to run on natural gas using a lean burn strategy by SwRI and are in field service in Santa Barbara Air Pollution Control District (SBAPCD). Two of the engines were tested under a steady-state cycle that simulates the U.S. heavy-duty transient cycle. The third engine was tested at the WVU Engine Research Laboratory following the U.S. Federal Test Procedure (FTP). However, at WVU, lean burn combustion strategy was shifted rich of stoichiometric during idling time of the FTP test. This may have caused the engine to produce more total hydrocarbons (THC) and carbon monoxide (CO).
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

An Investigation into the Emissions Reduction Performance of an SCR System Over Two Years' In-Use Heavy-Duty Vehicle Operation

2005-04-11
2005-01-1861
Increasingly stringent oxides of nitrogen (NOx) and particulate matter (PM) regulations worldwide have prompted considerable activity in developing emission control technology to reduce the emissions of these two constituents from heavy-duty diesel engines. NOx has come under particular scrutiny by regulators in the US and in Europe with the promulgation of very stringent regulation by both the US Environmental Protection Agency (EPA) and the European Union (EU). In response, heavy-duty engine manufacturers are considering Selective Catalytic Reduction (SCR) as a potential NOx reduction option. While SCR performance has been well established through engine dynamometer evaluation under laboratory conditions, there exists little data characterizing SCR performance under real-world operating conditions over time. This project evaluated the field performance of ten SCR units installed on heavy-duty Class 8 highway and refuse trucks.
Technical Paper

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters

2004-10-25
2004-01-2959
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT™ diesel particulate filter. No engine modifications were made. Bench scale fuel-engine compatibility testing showed the GTL fuel had cold flow properties suitable for year-round use in southern California and was additized to meet current lubricity standards. Bench scale elastomer compatibility testing returned results similar to those of CARB specification diesel fuel. The GTL fuel met or exceeded ASTM D975 fuel properties. Researchers used a chassis dynamometer to test emissions over the City Suburban Heavy Vehicle Route (CSHVR) and New York City Bus (NYCB) cycles.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization

1999-05-03
1999-01-1467
Speed-time and video data were logged for tractor-trailers performing local deliveries in Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the driver-to-driver variation of NOx was under 4%, although the driver-to-driver variations of CO and PM were higher.
X