Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Gaseous Fuels Variation Effects on Combustion and Emissions of a Small Direct Injection Natural Gas Engine

2019-04-02
2019-01-0560
Our research focused on the assessment of fuel variation effects on performance of a 34 cc two-stroke, natural gas combustion engine designed for use as the prime mover in either slider-crank or novel linear generator applications. Nearly two-thirds of US homes have either natural gas or liquefied petroleum gas available at low pressures. We tested the engine with three different natural gas blends, pure methane, and pure propane. In order to reduce fuel compression power, we modified the engine to use low-pressure direct injection (LPDI) of gaseous fuels. We examined regulated gaseous emissions, greenhouse gas emissions, and combustion trends over a range of delivered air fuel ratios. Start of Injection (SOI) occurred at either 180 or 190 CA BTDC and efficiency improved by reducing fuel slip. However, for natural gas blends, the predominant emissions were methane - a potent greenhouse gas.
X