Refine Your Search

Topic

Search Results

Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Journal Article

Investigation of Small Scale Pulsed Detonation Engines and Feasibility Study for Implementation with Disposable Unmanned Aerial Systems

2013-09-17
2013-01-2304
Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
Journal Article

The Influence of Accelerator Pedal Position Control during Transient Laboratory Testing on Heavy Duty Diesel Engines

2009-04-20
2009-01-0619
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
Technical Paper

Emissions of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations to Meet 2010 Heavy Duty Diesel Engine Emission Standards

2009-04-20
2009-01-0909
For engine operations involving low load conditions for an extended amount of time, the exhaust temperature may be lower than that necessary to initiate the urea hydrolyzation. This would necessitate that the controller interrupt the urea supply to prevent catalyst fouling by products of ammonia decomposition. Therefore, it is necessary for the engine controller to have multiple calibrations available in regions of engine operation where the aftertreatment does not perform well, so that optimal exhaust conditions are guaranteed during the wide variety of engine operations. In this study the test engine was equipped with a catalyzed diesel particulate filter (DPF) and a selective catalytic reduction system (SCR), and programmed with two different engine calibrations, namely the low-NOx and the low fuel consumption (low-FC).
Technical Paper

Downwash Wake Reduction Investigation for Application on the V-22 “Osprey”

2003-09-08
2003-01-3020
The downwash of the prop-rotor blades of the Bell/Boeing V-22 “Osprey” in hover mode creates an undesirable negative lift on the wing of the aircraft. This downforce can be reduced through a number of methods. Neglecting all other effects, such as power requirements, this research investigated the feasibility of using circulation control, through blowing slots on the leading and trailing edge of the airfoil to reduce the wake profile under the wing. A model was built at West Virginia University (WVU) and tested in a Closed Loop Wind Tunnel. The airfoil was placed normal to the airflow using the tunnel air to simulate the vertical component of the downwash experienced in hover mode. The standard hover mode flap angle of 67 degrees was used throughout the testing covered in this paper. All of these tests were conducted at a free stream velocity of 59 fps, and the baseline downforce on the model was measured to be 5.45 lbs.
Technical Paper

The Optimization of MOP Control Strategy for a Range-Extended Electric Vehicle Based on GA

2017-10-08
2017-01-2464
The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy. Finally, a dynamic simulation model of REEV is developed in Matlab/Simulink.
Technical Paper

Effects of EGR Addition onto Combustion Stability and Alternator Performance Variability of a Small, Single-Cylinder Diesel Generator

2016-11-08
2016-32-0063
The aim of this investigation was to improve understanding and quantify the impact of exhaust gas recirculation (EGR) as an emissions control measure onto cyclic variability of a small-bore, single-cylinder, diesel-fueled compression-ignition (CI) power generation unit. Of special interest were how cycle-to-cycle variations of the CI engine affect steady-state voltage deviations and frequency bandwidths. Furthermore, the study strived to elucidate the impact of EGR addition onto combustion parameters, as well as gaseous and particle phase emissions along with fuel consumption. The power generation unit was operated over five discrete steady-state test modes, representative of nominal 0, 25, 50, 75, and 100% engine load (i.e. 0-484kPa BMEP), by absorbing electrical power via a resistive load bank. The engine was equipped with a passive EGR system that directly connected the exhaust and intake runners through a small passage.
Technical Paper

ExhAUST: DPF Model for Real-Time Applications

2011-09-11
2011-24-0183
Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

2013-09-17
2013-01-2203
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

Investigation of Dynamic Roughness Flow Control on NACA 0012 Airfoil at Low Reynolds Number

2013-09-17
2013-01-2096
There is an ever growing need in the aircraft industry to increase the performance of a flight vehicle. To enhance performance of the flight vehicle one active area of research effort has been focused on the control of the boundary layer by both active and passive means. An effective flow control mechanism can improve the performance of a flight vehicle by eliminating boundary layer separation at the leading edge (as long as the energy required to drive the mechanism is not greater than the savings). In this paper the effectiveness of a novel active flow control technique known as dynamic roughness (DR) to eliminate flow separation in a stalled NACA 0012 wing has been explored. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Design, Manufacturing, Testing, and Analysis of a Highly-Constrained Single-Use UAV Wing

2018-10-30
2018-01-1958
Unmanned aerial vehicle (UAV) design aspects are as broad as the missions they are used to support. In some cases, the UAV mission scope can impose design constraints that can be difficult to achieve. This paper describes recent work performed at West Virginia University (WVU) to support repeated flight testing of a single-use UAV platform with emphasis on the highly specialized wings required to help meet the overall airframe mass properties constrained by the project sponsor. The wings were fabricated using a molded polyurethane (PU) foam as the base material which was supported by several different types of rigid and flexible substructures, skins, and matrix-infused fiber elements. Different ratios of infused fiber mass to PU foam were tested and additional tungsten masses were added to the wings to achieve the correct total mass and mass distribution of the wings.
Technical Paper

Nearfield Analysis of Low Speed Flow over a Dielectric Barrier Discharge Device for Enhancement of Small UAV Aerodynamics

2018-10-30
2018-01-1953
As unmanned aerial vehicle applications continue their rise in popularity in the public and private sectors, there is an increasing demand in many cases for smaller, more efficient low speed unmanned aerial vehicles (UAVs). Although the primary drivers for the continued performance improvement of smaller UAV platforms tend to be in the areas of electronics miniaturization and improved energy storage, aerodynamics, particularly in the low Reynolds number regime, still have a significant role in the overall performance enhancement of small UAVs. This paper focuses on the study of the nearfield aerodynamic effects of a low-power active flow enhancement technique known as dielectric barrier discharge (DBD) in very low speed/low Reynolds number flows most closely associated with small and micro unmanned aerial vehicles.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

2014-09-16
2014-01-2101
The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Evaluation of Sensor Failure Detection, Identification and Accommodation (SFDIA) Performance Following Common-Mode Failures of Pitot Tubes

2014-09-16
2014-01-2164
Recent catastrophic air crashes have shown that physical redundancy is not a foolproof option for failures on Air Data Systems (ADS) on an aircraft providing airspeed measurements. Since all the redundant sensors are subjected to the same environmental conditions in flight, a failure on one sensor could occur on the other sensors under certain conditions such as extreme weather; this class of failure is known in the literature as “common mode” failure. In this paper, different approaches to the problem of detection, identification and accommodation of failures on the Air Data System (ADS) of an aircraft are evaluated. This task can be divided into component tasks of equal criticality as Sensor Failure Detection and Identification (SFDI) and Sensor Failure Accommodation (SFA). Data from flight test experiments conducted using the WVU YF-22 unmanned research aircraft are used.
Technical Paper

Design, Construction, and Operation of a Pneumatic Test Launch Apparatus for sUAS Prototypes

2015-09-15
2015-01-2454
The design and testing of small unmanned aerial vehicle (sUAV) prototypes can provide numerous difficulties when compared to the same process applied to larger aircraft. In most cases, it is desirable to have a better understanding of the low Reynolds number aerodynamics and stability characteristics prior to completion of the final sUAV design. This paper describes the design, construction, and operational performance of a pneumatic launch apparatus that has been used at West Virginia University (WVU) for the development and early flight testing of transforming sUAV platforms. Although other launch platforms exist that can provide the safe launch of such prototypes, the particular launch apparatus constructed at WVU exhibits unmatched launch efficiency, and is far less expensive to operate per shot than any other launch system available.
Technical Paper

CAD/CFD/CAE Modelling of Wankel Engines for UAV

2015-09-15
2015-01-2466
The Wankel engine for Unmanned Aerial Vehicle (UAV) applications delivers advantages vs. piston engines of simplicity, smoothness, compactness and high power-to-weight ratio. The use of computational fluid dynamic (CFD) and computer aided engineering (CAE) tools may permit to address the major downfalls of these engines, namely the slow and incomplete combustion due to the low temperatures and the rotating combustion chambers. The paper proposes the results of CAD/CFD/CAE modelling of a Wankel engine featuring tangential jet ignition to produce faster and more complete combustion.
Technical Paper

Two Stroke Direct Injection Jet Ignition Engines for Unmanned Aerial Vehicles

2015-09-15
2015-01-2424
Unmanned Aerial Vehicles (UAV) require simple and reliable engines of high power to weight ratio. Wankel and two stroke engines offer many advantages over four stroke engines. A two stroke engines featuring crank case scavenging, precise oiling, direct injection and jet ignition is analyzed here by using CAD, CFD and CAE tools. Results of simulations of engine performances are shown in details. The CFD analysis is used to study fuel injection, mixing and combustion. The CAE model then returns the engine performances over the full range of loads and speeds with the combustion parameters given as an input. The use of asymmetric rather than symmetric port timing and supercharging scavenging is finally suggested as the best avenue to further improve power density and fuel conversion efficiency.
Technical Paper

Investigating the Potential of Waste Heat Recovery as a Pathway for Heavy-Duty Exhaust Aftertreatment Thermal Management

2015-04-14
2015-01-1606
Heavy-duty diesel (HDD) engines are the primary propulsion source for most heavy-duty vehicle freight movement and have been equipped with an array of aftertreatment devices to comply with more stringent emissions regulations. In light of concerns about the transportation sector's influence on climate change, legislators are introducing requirements calling for significant reductions in fuel consumption and thereby, greenhouse gas (GHG) emission over the coming decades. Advanced engine concepts and technologies will be needed to boost engine efficiencies. However, increasing the engine's efficiency may result in a reduction in thermal energy of the exhaust gas, thus contributing to lower exhaust temperature, potentially affecting aftertreatment activity, and consequently rate of regulated pollutants. This study investigates the possible utilization of waste heat recovered from a HDD engine as a means to offset fuel penalty incurred during thermal management of SCR system.
X