Refine Your Search

Topic

Search Results

Journal Article

Development of an Ammonia Reduction Aftertreatment Systems for Stoichiometric Natural Gas Engines

2017-01-10
2017-26-0143
Three-way catalyst equipped stoichiometric natural gas vehicles have proven to be an effective alternative fuel strategy that has shown superior low NOx benefits in comparison to diesels equipped with SCR. However, recent studies have shown the TWC activity to contribute to high levels of tailpipe ammonia emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM formation. Ammonia (NH3) is an inevitable catalytic byproduct of TWCduring that results also corresponds to lowest NOx emissions. The main objective of the study is to develop a passive SCR based NH3 reduction strategy that results in an overall reduction of NH3 as well as NOx emissions from a stoichiometric spark ignited natural gas engine. The study investigated the characteristics of Fe-based and Cu-based zeolite SCR catalysts in storage, and desorption of ammonia at high exhaust temperature conditions, that are typical of stoichiometric natural gas engines.
Journal Article

On-Road NOx Emission Rates from 1994-2003 Heavy-Duty Diesel Trucks

2008-04-14
2008-01-1299
In-service 1994-2003 heavy-duty trucks were acquired by West Virginia University (WVU), equipped with the WVU Mobile Emissions Measurement System (MEMS) to measure on-road NOx, and driven on road routes near Sabraton, West Virginia, and extending up to Washington, PA to obtain real-world oxides of nitrogen (NOx) emissions data on highways and local roads. The MEMS measured 5Hz NOx, and load was obtained from the electronic control unit. Trucks were loaded to about 95% of their gross vehicle weights. Emissions in g/mi and g/bhp-hr were computed over the various road routes. In addition, some of the trucks were tested 1 to 2 years later to determine emission changes that may have occurred for these trucks. Emission results varied significantly over the different road routes due to different speeds, driving patterns, and road grades.
Technical Paper

Laser Spark Plug Development

2007-04-16
2007-01-1600
To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

1998-10-19
982533
Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-11-02
2009-01-2672
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
Technical Paper

Chassis Dynamometer Emission Measurements from Refuse Trucks Using Dual-Fuel™ Natural Gas Engines

2003-11-10
2003-01-3366
Emissions from 10 refuse trucks equipped with Caterpillar C-10 engines were measured on West Virginia University's (WVU) Transportable Emissions Laboratory in Riverside, California. The engines all used a commercially available Dual-Fuel™ natural gas (DFNG) system supplied by Clean Air Partners Inc. (CAP), and some were also equipped with catalyzed particulate filters (CPFs), also from CAP. The DFNG system introduces natural gas with the intake air and then ignites the gas with a small injection of diesel fuel directly into the cylinder to initiate combustion. Emissions were measured over a modified version of a test cycle (the William H. Martin cycle) previously developed by WVU. The cycle attempts to duplicate a typical curbside refuse collection truck and includes three modes: highway-to-landfill delivery, curbside collection, and compaction. Emissions were compared to similar trucks that used Caterpillar C-10 diesels equipped with Engelhard's DPX catalyzed particulate filters.
Technical Paper

Measuring Diesel Emissions with a Split Exhaust Configuration

2001-05-07
2001-01-1949
West Virginia University evaluated diesel oxidation catalysts (DOC) and lean-NOX catalysts as part of Diesel Emissions Control-Sulfur Effects (DECSE) project. In order to perform thermal aging of the DOC and lean-NOX catalysts simultaneously and economically, each catalyst was sized to accommodate half of the engine exhaust flow. Simultaneous catalyst aging was then achieved by splitting the engine exhaust into two streams such that approximately half of the total exhaust flowed through the DOC and half through the lean-NOX catalyst. This necessitated splitting the engine exhaust into two streams during emissions measurements. Throttling valves installed in each branch of the split exhaust were adjusted so that approximately half the engine exhaust passed though the active catalyst under evaluation and into a full flow dilution tunnel for emissions measurement.
Technical Paper

Development of Continuous Dilution Factor for CVS Emissions Sampling and Calculation

2001-11-12
2001-01-2815
During the last three decades, the emissions measurement system for heavy duty vehicle testing has employed a Constant Volume Sampler (CVS) system to continuously measure the pollutant concentrations in the dilution tunnel. Subsequent gaseous emissions calculation methods were based on Code of Federal Regulations, Title 40 (CFR-40) in which a formula for calculating dilution factor (DF) was specified to account for background pollutants. However, it is recognized that due to the mechanism of the CVS system, the dilution factor varies from a constant during a test cycle. The DF calculation technique can introduce error in the emissions data, but the magnitude of potential error is small relative to the current emissions standards. However, as the engine technologies improve and cleaner burning fuels are adopted in the near future, the pollutant concentrations from engines will approach those in ambient air.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

Evaluation of Kinetics Process in CFD Model and Its Application in Ignition Process Analysis of a Natural Gas-Diesel Dual Fuel Engine

2017-03-28
2017-01-0554
Computational fluid dynamics (CFD) model has been widely applied in internal combustion (IC) engine research. The integration of chemical kinetic model with CFD provides an opportunity for researchers to investigate the detailed chemical reactions for better understanding the combustion process of IC engines. However, the simulation using CFD has generally focused on the examination of primary parameters, such as temperature and species distributions. The detailed investigation on chemical reactions is limited. This paper presents the development of a post-processing tool capable of calculating the rate of production (ROP) of interested species with the known temperature, pressure, and concentration of each species in each cell simulated using CONVERGE-SAGE CFD model.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Exhaust Gas Recirculation in a Lean-Burn Natural Gas Engine

1998-05-04
981395
Lean-burn natural gas engines offer attractively low particulate matter emissions and enjoy higher efficiencies than their stoichiometric counterparts. However, even though oxides of nitrogen emissions can be reduced through operation at lambda ratios of greater than 1.3, catalysts cannot reduce the oxides of nitrogen emissions in the oxidizing exhaust environment. Exhaust Gas Recirculation (EGR) offers the potential to reduce engine out oxides of nitrogen emissions by reducing the flame temperature and oxygen partial pressure that encourages their formation during the combustion process. A comparative study involving a change in the nature of primary diluent (air replaced by EGR) in the intake of a Hercules, 3.7 liter, lean-burn natural gas engine has been undertaken in this research. The Hercules engine was equipped with a General Motors electronically controlled EGR valve for low EGR rates, and a slide valve, constructed in house, for high EGR rates.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Misfire, Knock and NOx Mapping of a Laser Spark Ignited Single Cylinder Lean Burn Natural Gas Engine

2004-06-08
2004-01-1853
Evermore demanding market and legislative pressures require stationary lean burn natural gas engines to operate at higher efficiencies and reduced levels of emissions. Higher in-cylinder pressures and leaner air/fuel ratios are required in order to meet these demands. The performance and durability of spark plug ignition systems suffer as a result of the increase in spark energy required to maintain suitable engine operation under these conditions. Advancing the state of the art of ignition systems for these engines is critical to meeting increased performance requirements. Laser-spark ignition has shown potential to improve engine performance and ignition system durability to levels required meet or exceed projected requirements. This paper discusses testing which extends previous efforts [1] to include constant fueling knock, misfire, thermal efficiency, and NOx emissions mapping of a single cylinder lean burn natural gas engine.
Technical Paper

Quality Assurance of Exhaust Emissions Test Data Measured Using Portable Emissions Measurement System

2005-10-24
2005-01-3799
Beginning 2007, heavy-duty engine certification would require that in-use emissions from vehicles be measured under ‘real-world’ operating conditions using on-board measurement devices. An on-board portable emissions measurement system called Mobile Emissions Measurement System (MEMS) was developed at West Virginia University (WVU) to record in-use, continuous and brake-specific emissions from heavy-duty diesel-powered vehicles. The objective of this paper is to present a preliminary development of a test data quality assurance methodology for emissions measured using the any portable emissions measurement system (PEMS). The first stage of the methodology requires ensuring the proper operation of the different sensors and transducers during data collection. The second stage is data synchronization and pre-processing. The next stage is systematic checking of possible errors from transducers and sensors.
Technical Paper

Design of a Portable Micro-Dilution Tunnel Particulate Matter Emissions Measurement System

2005-10-24
2005-01-3795
The Federal Test Procedure (FTP) for heavy-duty engines requires the use of a full-flow tunnel based constant volume sampler (CVS). These are costly to build and maintain, and require a large workspace. A small portable micro-dilution system that could be used on-board, for measuring emissions of in-use, heavy-duty vehicles would be an inexpensive alternative. This paper presents the rationale behind the design of such a portable particulate matter measuring system. The presented micro-dilution tunnel operates on the same principle as a full-flow tunnel, however given the reduced size dilution ratios can be more easily controlled with the micro dilution system. The design targets dilution ratios of at least four to one, in accordance with the ISO 8178 requirements. The unique features of the micro-dilution system are the use of only a single pump and a porous sintered stainless steel tube for mixing dilution air and raw exhaust sample.
Technical Paper

Comparison of Averaging Techniques Employed in Calculating Not-to-Exceed Emissions for Heavy-Duty Vehicles

2005-10-24
2005-01-3787
Certification of heavy-duty diesel requires engines to be tested on an engine dynamometer and meet certification in accordance with specific procedures and cycles. However, real-world emissions have been observed to be significantly different from in-laboratory testing. The brake-specific emissions from vehicles are influenced by various operating parameters such as engine speed, load, traffic flow and ambient conditions, hence, vary from the values obtained from the certification tests. In the future, US EPA and other state regulating bodies will require the engine manufacturers to measure in-use emissions from vehicles operating under “real-world” operating conditions. A test vehicle instrumented with West Virginia University's (WVU) Mobile Emissions Measurement System (MEMS), a portable onboard tailpipe emissions measurement system, was used to obtain engine operating conditions, vehicle speed and in-use emission rates of CO2 and NOx.
Technical Paper

Hydrogen Blended Natural Gas Operation of a Heavy Duty Turbocharged Lean Burn Spark Ignition Engine

2004-10-25
2004-01-2956
A turbocharged lean burn natural gas engine was upgraded to operate on a blend of hydrogen and natural gas (HCNG). Tests were carried out to determine the most suitable H2/NG blend for H2 fractions between 20 and 32 vol%. A 20 vol% H2 content was found to provide the desired benefits when taking into consideration the engine and vehicle performance attributes. A full engine map was developed for the chosen mixture, and was verified over the steady-state AVL8 cycle. In general, the HCNG calibration included operation at higher air-fuel ratios and retarded spark timings. The results indicated that the NOx and NMHC emissions were reduced by 50% and 58% respectively, while the CO and CH4 emissions were slightly reduced. The HCNG engine torque, power and fuel consumption were maintained the same as for the natural gas fuel. The chassis dynamometer transient testing confirmed large NOx reduction of about 56% for HCNG operation.
Technical Paper

Investigation of Heat Transfer Characteristics of Heavy-Duty Spark Ignition Natural Gas Engines Using Machine Learning

2022-03-29
2022-01-0473
Machine learning algorithms are effective tools to reduce the number of engine dynamometer tests during internal combustion engine development and/or optimization. This paper provides a case study of using such a statistical algorithm to characterize the heat transfer from the combustion chamber to the environment during combustion and during the entire engine cycle. The data for building the machine learning model came from a single cylinder compression ignition engine (13.3 compression ratio) that was converted to natural-gas port fuel injection spark-ignition operation. Engine dynamometer tests investigated several spark timings, equivalence ratios, and engine speeds, which were also used as model inputs. While building the model it was found that adding the intake pressure as another model input improved model efficiency.
X