Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Using Reinforcement Learning and Simulation to Develop Autonomous Vehicle Control Strategies

2020-04-14
2020-01-0737
While machine learning in autonomous vehicles development has increased significantly in the past few years, the use of reinforcement learning (RL) methods has only recently been applied. Convolutional Neural Networks (CNNs) became common for their powerful object detection and identification and even provided end-to-end control of an autonomous vehicle. However, one of the requirements of a CNN is a large amount of labeled data to inform and train the neural network. While data is becoming more accessible, these networks are still sensitive to the format and collection environment which makes the use of others’ data more difficult. In contrast, RL develops solutions in a simulation environment through trial and error without labeled data. Our research expands upon previous research in RL and Proximal Policy Optimization (PPO) and the application of these algorithms to 1/18th scale cars by expanding the application of this control strategy to a full-sized passenger vehicle.
Technical Paper

Higher Accuracy and Lower Computational Perception Environment Based Upon a Real-time Dynamic Region of Interest

2022-03-29
2022-01-0078
Robust sensor fusion is a key technology for enabling the safe operation of automated vehicles. Sensor fusion typically utilizes inputs of cameras, radars, lidar, inertial measurement unit, and global navigation satellite systems, process them, and then output object detection or positioning data. This paper will focus on sensor fusion between the camera, radar, and vehicle wheel speed sensors which is a critical need for near-term realization of sensor fusion benefits. The camera is an off-the-shelf computer vision product from MobilEye and the radar is a Delphi/Aptive electronically scanning radar (ESR) both of which are connected to a drive-by-wire capable vehicle platform. We utilize the MobilEye and wheel speed sensors to create a dynamic region of interest (DROI) of the drivable region that changes as the vehicle moves through the environment.
Journal Article

Tire Track Identification: A Method for Drivable Region Detection in Conditions of Snow-Occluded Lane Lines

2022-03-29
2022-01-0083
Today’s Advanced Driver Assistance Systems (ADAS) predominantly utilize cameras to increase driver and passenger safety. Computer vision, as the enabler of this technology, extracts two key environmental features: the drivable region and surrounding objects (e.g., vehicles, pedestrians, bicycles). Lane lines are the most common characteristic extracted for drivable region detection, which is the core perception task enabling ADAS features such as lane departure warnings, lane-keeping assistance, and lane-centering. However, when subject to adverse weather conditions (e.g., occluded lane lines) the lane line detection algorithms are no longer operational. This prevents the ADAS feature from providing the benefit of increased safety to the driver. The performance of one of the leading computer vision system providers was tested in conditions of variable snow coverage and lane line occlusion during the 2020-2021 winter in Kalamazoo, Michigan.
Technical Paper

Projecting Lane Lines from Proxy High-Definition Maps for Automated Vehicle Perception in Road Occlusion Scenarios

2023-04-11
2023-01-0051
Contemporary ADS and ADAS localization technology utilizes real-time perception sensors such as visible light cameras, radar sensors, and lidar sensors, greatly improving transportation safety in sufficiently clear environmental conditions. However, when lane lines are completely occluded, the reliability of on-board automated perception systems breaks down, and vehicle control must be returned to the human driver. This limits the operational design domain of automated vehicles significantly, as occlusion can be caused by shadows, leaves, or snow, which all occur in many regions. High-definition map data, which contains a high level of detail about road features, is an alternative source of the required lane line information. This study details a novel method where high-definition map data are processed to locate fully occluded lane lines, allowing for automated path planning in scenarios where it would otherwise be impossible.
Technical Paper

Road Snow Coverage Estimation Using Camera and Weather Infrastructure Sensor Inputs

2023-04-11
2023-01-0057
Modern vehicles use automated driving assistance systems (ADAS) products to automate certain aspects of driving, which improves operational safety. In the U.S. in 2020, 38,824 fatalities occurred due to automotive accidents, and typically about 25% of these are associated with inclement weather. ADAS features have been shown to reduce potential collisions by up to 21%, thus reducing overall accidents. But ADAS typically utilize camera sensors that rely on lane visibility and the absence of obstructions in order to function, rendering them ineffective in inclement weather. To address this research gap, we propose a new technique to estimate snow coverage so that existing and new ADAS features can be used during inclement weather. In this study, we use a single camera sensor and historical weather data to estimate snow coverage on the road. Camera data was collected over 6 miles of arterial roadways in Kalamazoo, MI.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

No Cost Autonomous Vehicle Advancements in CARLA through ROS

2021-04-06
2021-01-0106
Development of autonomous vehicle technology is expensive and perhaps more complicated than initially thought, as evidenced by the recent rollback of anticipated delivery dates from companies such as Tesla, Waymo, GM, and more. One of the most effective techniques to reduce research and development costs and speed up implementation is rigorous analysis through simulation. In this paper, we present multiple autonomous vehicle perception and control strategies that are rigorously investigated in the user friendly, free, and open-source simulation environment, CARLA. Overall, we successfully formulated potential solutions to the autonomous navigation problem and assessed their advantages and disadvantages in simulation at no cost. First, a lane finding method utilizing polynomial fitting and machine learning is proposed. Then, the waypoint navigation strategy is described, along with route planning. Object detection is then implemented using pre-trained convolutional neural networks.
Technical Paper

Model in the Loop Control Strategy Evaluation Procedure for an Autonomous Parking Lot Sweeper

2022-03-29
2022-01-0086
A path tracking controller is essential for an autonomous vehicle to navigate a complex environment while avoiding obstacles. Many research studies have proposed new controller designs and strategies. However, it is often unclear which control strategy is the most suitable for a specific Autonomous / ADAS user application. This study proposes a benchmark workflow by comparing different control observer models and their control strategies integration for an autonomous parking lot sweeper in a complex and dense environment at low-speed utilizing model-in-the-loop simulation. The systematic procedure consists of the following steps: (1) vehicle observer model validation (2) control strategy development (3) model-in-the-loop simulation benchmark for specific user scenarios. The kinematic and dynamic vehicle models were used to validate the truck’s behavior using physical data.
Technical Paper

Real World Use Case Evaluation of Radar Retro-reflectors for Autonomous Vehicle Lane Detection Applications

2024-04-09
2024-01-2042
Lane detection plays a critical role in autonomous vehicles for safe and reliable navigation. Lane detection is traditionally accomplished using a camera sensor and computer vision processing. The downside of this traditional technique is that it can be computationally intensive when high quality images at a fast frame rate are used and has reliability issues from occlusion such as, glare, shadows, active road construction, and more. This study addresses these issues by exploring alternative methods for lane detection in specific scenarios caused from road construction-induced lane shift and sun glare. Specifically, a U-Net, a convolutional network used for image segmentation, camera-based lane detection method is compared with a radar-based approach using a new type of sensor previously unused in the autonomous vehicle space: radar retro-reflectors.
X