Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

2007-07-09
2007-01-3216
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements.
Technical Paper

Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

2007-07-09
2007-01-3217
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples.
Technical Paper

A Test Plan for Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

2008-06-29
2008-01-2113
The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source.
Technical Paper

Archiving Trace Organic Contaminants in Spacecraft Water

2003-07-07
2003-01-2408
One of the long-standing concerns in space exploration is the presence of trace organic contaminants in recycled spacecraft water supplies. At present, water samples on the International Space Station (ISS) are collected at regular intervals, stored in Teflon™-lined containers, and returned to Earth for characterization. This approach, while effective in defining water quality, has several notable problems. First, this method of archiving removes a significant volume of the ISS water supply. Second, the archived water consumes valuable cargo space in returning Shuttle and Soyuz vehicles. Third, the organic contaminants present in the collected samples may degrade upon extended storage. The latter problem clearly compromises sample integrity. Upon return to Earth, sample degradation is minimized by refrigeration. Due to present resource constraints, however, refrigeration is not a viable option in space.
Technical Paper

Rapid Determination of Biocide Concentrations Using Colorimetric Solid Phase Extraction (C-SPE): Results from Microgravity Testing

2003-07-07
2003-01-2406
A sorption-spectrophotometric platform for the concentration and subsequent quantification of biocides in spacecraft drinking water is described. This methodology, termed Colorimetric Solid Phase Extraction (C-SPE), is based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent. Quantification of the extracted analytes is accomplished by interrogating the surface of the membrane with a commercially available diffuse reflectance spectrophotometer. Ground-based experiments have shown that C-SPE is a viable means to determine biocide concentrations in the range commonly found in water samples from the Space Shuttle and the International Space Station (ISS). This paper details efforts to advance C-SPE closer to space flight qualification and ISS implementation, starting with the modification of the ground based biocide detection platform to simplify operation in a microgravity environment.
Technical Paper

ISS Potable Water Sampling and Chemical Analysis: Expeditions 4 & 5

2003-07-07
2003-01-2401
The International Space Station (ISS) drinking water supply consists of water recovered from humidity condensate, water transferred from Shuttle, and groundwater supplied from Russia. The water is dispensed from both the stored water dispensing system (SVO-ZV) and the condensate recovery system (SRV-K) galley. Teflon bags are used periodically to collect potable water samples, which are then transferred to Shuttle for return to Earth. The results from analyses of these samples are used to monitor the potability of the drinking water on board and evaluate the efficiency of the water recovery system. This report provides results from detailed analyses of samples of ISS recovered potable water, Shuttle-supplied water, and ground-supplied water taken during ISS Expeditions 4 and 5. During Expedition 4, processing of U.S. Lab condensate through the Russian condensate recovery system was initiated. Results indicate water recovered from both Service Module and U.S.
Technical Paper

Identification of an Organic Impurity Leaching from a Prototype ISS Water Container

2001-07-09
2001-01-2125
Collapsible bladder tanks called Contingency Water Containers (CWCs) have been used to transfer water from the Shuttle to the Mir and the International Space Station (ISS). Because their use as potable water storage on the ISS is planned for years, efforts are underway to improve the containers, including the evaluation of new materials. Combitherm®, a multi-layer plastic film, is a material under evaluation for use as the CWC bag material. It consists of layers of linear low density polyethylene, ethylene-vinyl alcohol copolymer, nylon, and a solvent- free adhesive layer. Long term studies of the quality of water stored in Combitherm bladders indicate a gradual but steady increase in the total organic carbon value. This suggests a leaching or breakdown of an organic component of the Combitherm.
Technical Paper

A Rapid Method for Determining Biocide Concentration in a Spacecraft Water Supply

2002-07-15
2002-01-2535
Monitoring and maintaining biocide concentrations is vital for assuring safe drinking water both in ground and spacecraft applications. Currently, there are no available methods to measure biocide concentrations (i.e., silver ion or iodine) on-orbit. Sensitive, rapid, simple colorimetric methods for the determination of silver(I) and iodine are described. The apparatus consists of a 13-mm extraction disk (Empore® membrane) impregnated with a colorimetric reagent and placed in a plastic filter holder. A Luer tip syringe containing the aqueous sample is attached to the holder and 10 mL of sample is forced through the disk in ∼30 s. Silver(I) is retained by a disk impregnated with 5-(p-dimethylaminobenzylidene)-rhodanine (DMABR), and iodine is retained as a yellow complex on a membrane impregnated with polyvinylpyrrolidone (PVP).
Technical Paper

Quality of Water Supplied by Shuttle to ISS

2002-07-15
2002-01-2532
The water supply for the International Space Station (ISS) consists partially of excess fuel-cell water that is treated on the Shuttle and stored on ISS in 44 L collapsible Contingency Water Containers (CWCs). Iodine is removed from the source water, and silver biocide and mineral concentrates are added by the crewmember while the CWCs are filled. Potable (mineralized) CWCs are earmarked for drinking and food hydration, and technical (non-mineralized) CWCs are reserved for waste system flushing and electrolytic oxygen generation. Representative samples are collected in Teflon® bags and returned to Earth for chemical analysis. The parameters typically measured include pH, conductivity, total organic carbon, iodine, silver, calcium, magnesium, fluoride, trace metals, formate and alcohols. The Nylon monomer caprolactam is also measured and tracked since it is known to leach slowly out of the plastic CWC bladder material.
Technical Paper

Application of Colorimetric Solid Phase Extraction (C-SPE) to Monitoring Nickel(II) and Lead(II) in Spacecraft Water Supplies

2004-07-19
2004-01-2539
Archived water samples collected on the International Space Station (ISS) and returned to Earth for analysis have, in a few instances, contained trace levels of heavy metals. Building on our previous advances using Colorimetric Solid Phase Extraction (C-SPE) as a biocide monitoring technique [1, 2], we are devising methods for the low level monitoring of nickel(II), lead(II) and other heavy metals. C-SPE is a sorption-spectrophotometric platform based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent that are then quantified on the surface of the membrane using a diffuse reflectance spectrophotometer. Along these lines, we have analyzed nickel(II) via complexation with dimethylglyoxime (DMG) and begun to examine the analysis of lead(II) by its reaction with 2,5-dimercapto-1, 3, 4-thiadiazole (DMTD) and 4-(2-pyridylazo)-resorcinol (PAR).
Technical Paper

Anatomical Modeling Considerations for Calculating Organ Exposures in Space

2000-07-10
2000-01-2412
Typical calculations of radiation exposures in space approximate the composition of the human body by a single material, typically Aluminum or water. A further approximation is made with regard to body size by using a single anatomical model to represent people of all sizes. A comparison of calculations of organ dose and dose-equivalent is presented. Calculations are first performed approximating body materials by water equivalent thickness', and then using a more accurate representation of materials present in the body. In each case of material representation, a further comparison is presented of calculations performed modeling people of different sizes.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate: Phase One Final Results and Lessons Learned

1999-07-12
1999-01-2028
Twenty-nine recycled water, eight stored (ground-supplied) water, and twenty-eight humidity condensate samples were collected on board the Mir Space Station during the Phase One Program (1995-1998). These samples were analyzed to determine potability of the recycled and ground-supplied water, to support the development of water quality monitoring procedures and standards, and to assist in the development of water reclamation hardware. This paper describes and summarizes the results of these analyses and lists the lessons learned from this project. Results show that the recycled water and stored water on board Mir, in general, met NASA, Russian Space Agency (RSA), and U.S. Environmental Protection Agency (EPA) standards.
X