Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Journal Article

Lab-Based Testing of ADAS Applications for Commercial Vehicles

2015-09-29
2015-01-2840
Advanced driver assistance systems (ADAS) are becoming increasingly important for today's commercial vehicles. It is therefore crucial that different ADAS functionalities interact seamlessly with existing electronic control unit (ECU) networks. For example, autonomous emergency braking (AEB) systems directly influence the brake ECU and engine control. It has already become impossible to reliably validate this growing interconnectedness of control interventions in vehicle behavior with prototype vehicles alone. The relevant tests must be brought into the lab at an earlier development stage to evaluate ECU interaction automatically. This paper presents an approach for using hardware-in-the-loop (HIL) simulation to validate ECU networks for extremely diverse ADAS scenarios, while taking into account real sensor data. In a laboratory environment, the sensor systems based on radars, cameras, and maps are stimulated realistically with a combination of simulation and animation.
Journal Article

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-09-13
2011-01-2264
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Technical Paper

Hardware-in-the-Loop Test Systems for Electric Motors in Advanced Powertrain Applications

2007-04-16
2007-01-0498
Electric drives are growing in importance in automotive applications, especially in hybrid electric vehicles (HEV) and in the vehicle dynamics area (steering systems, etc.). The challenges of real-time hardware-in-the-loop (HIL) simulation and testing of electric drives are addressed in this paper. In general, three different interface levels between the electric drive and the hardware-inthe-loop system can be distinguished: the signal level (1), the electrical level (2) and the mechanical level (3). These interface levels, as well as modeling and I/O-related aspects of electric drives and power electronics devices, are discussed in detail in the paper. Finally, different solutions based on dSPACE simulator technology are presented, for both hybrid vehicle and steering applications.
Technical Paper

Simulating and Testing In-Vehicle Networks by Hardware-in-the-Loop Simulation

2008-04-14
2008-01-1220
Validating control units with hardware-in-the-loop (HIL) simulators is an established method for quality enhancements in automotive software. It is primarily used for testing applications, but in view of increased networking between electronic control units, it can also be used for testing communication scenarios. The testing of electronic control unit (ECU) communication often includes only positive testing. Simple communication nodes are used for this, and communication analyzers are used for verifying communication up to the physical level. However, it is not only an ECU's positive communication behavior that has to be tested, but also its correct behavior in the event of communication errors. In HIL communication scenarios, it is not only possible to emulate the missing bus nodes (restbus simulation) with a link to real-time signals; correct ECU behavior in the event of communication errors can also be tested.
Technical Paper

Advantages and Challenges of Closed-Loop HIL Testing for Commercial and Off-Highway Vehicles

2009-10-06
2009-01-2841
Hardware-in-the-loop (HIL) testing is used by commercial vehicle original equipment manufacturers (OEMs) in several fields of electronics development. HIL tests are a part of the standard development process for engine and machine control systems. For electronic control units (ECUs), not only the HIL test of the hardware but also the controller software validation is very important. For hardware diagnostics validation, a dynamic simulation of the real system could be omitted and an open-loop test of the controller is sufficient in most cases. For most controller software validation including OBD (on-board diagnosis) tests, detailed but real-time capable models have to be used. This article describes the needs and challenges of models in hardware-in-the-loop (HIL) based testing, taking into account the wide range of commercial and off-highway vehicles.
Technical Paper

Modular Multibody Approach for Real-Time Simulation of Vehicle-Trailer Combinations

2010-04-12
2010-01-0720
Hardware-in-the-loop (HIL) simulation in the development and test process of vehicle dynamics controllers requires a real-time tractor-trailer simulation model. The hitch coupling must be numerically stable to ensure real-time simulation for various driving maneuvers, particularly at the vehicle's handling limits. This paper presents a robust implementation of tractor-trailer coupling. The equation of motion is formed using a novel formulation which is a combination of Jourdain's Principle and the Articulated Body Algorithm. The paper shows that a robust model for a real-time tractor-trailer simulation can be achieved with the proposed method. Moreover, the approach presented is suitable for modular modeling, is successfully implemented and can also be used as a basis for flexible system definition with an adjustable number of trailer axles.
Technical Paper

Embedded Software Tools Enable Hybrid Vehicle Architecture Design and Optimization

2010-10-19
2010-01-2308
This presentation focuses on several examples of partnerships between tool suppliers and embedded software developers in which state-of-the-art tools are used to optimize a variety of electric and hybrid vehicle architectures. Projects with Automotive OEMs, Tier One Suppliers as well as with academic institutions will be described. Due to the growing complexity in multiple electronic control units (“ECUs”) inter-communicating over numerous network bus systems, combined with the challenge of controlling and maintaining charges for electric motors, vehicle development would be impossible without use of increasingly sophisticated tools. Hybrid drive trains are much more complex than conventional ones, they have at least one degree of freedom more.
Technical Paper

Modelling and Simulation Tools for Systems Integration on Aircraft

2016-09-20
2016-01-2052
This paper presents an overview of a project called “Modelling and Simulation Tools for Systems Integration on Aircraft (MISSION)”. This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modeling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the Aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multi-physics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
Technical Paper

Advancements in Hardware-in-the-Loop Technology in Support of Complex Integration Testing of Embedded System Software

2011-04-12
2011-01-0443
Automotive technology is rapidly changing with electrification of vehicles, driver assistance systems, advanced safety systems etc. This advancement in technology is making the task of validation and verification of embedded software complex and challenging. In addition to the component testing, integration testing imposes even tougher requirements for software testing. To meet these challenges dSPACE is continuously evolving the Hardware-In-the-Loop (HIL) technology to provide a systematic way to manage this task. The paper presents developments in the HIL hardware technology with latest quad-core processors, FPGA based I/O technology and communication bus systems such as Flexray. Also presented are developments of the software components such as advanced user interfaces, GPS information integration, real-time testing and simulation models. This paper provides a real-world example of implication of integration testing on HIL environment for Chassis Controls.
Technical Paper

Hybrid Vehicle Model Development using ASM-AMESim-Simscape Co-Simulation for Real-Time HIL Applications

2012-04-16
2012-01-0932
Hardware-in-the-loop (HIL) simulation is a real-time testing process that has been proven indispensable for the modern vehicle dynamics, powertrain, chassis and body systems electronic controls development. The high quality standards and robustness of the control algorithms can only be met by means of detailed vehicle plant simulation models. In the last few years, several efforts have been made to develop detailed plant models. Several tools for the vehicle modeling are available in the market and each tool has different and distinct advantages. This paper addresses ways that dSPACE Automotive Simulation Models (ASM) can support the model-based development processes. Additional modern software tools that were used in connection with the ASM are LMS AMESim and Mathworks SimDriveline (of Simscape). ASM is an open Matlab/Simulink model environment used for offline PC based simulation and online real-time platform HIL testing.
Technical Paper

An Analysis of Data Curation Techniques throughout the Perception Development Pipeline

2023-04-11
2023-01-0055
The development of perception functions for tomorrow’s automated vehicles is driven by enormous amounts of data: often exceeding a gigabyte per second and reaching into the terabytes per hour. Data is typically gathered by a fleet of dozens of mule vehicles which multiply the data generated into the hundreds of petabytes per year. Traditional methods for fueling data-driven development would record every bit of every second of a data logging drive on solid-state drives located on a PC in the vehicle. Recorded data must then be exported from these drives using an upload station which pushes to the data lake after arriving back at the garage. This paper considers different techniques for curating logged data.
Technical Paper

Novel Framework Approach for Model-Based Process Integration from Requirements to Verification Demonstrated on a Complex, Cyber-Physical Aircraft System

2018-10-30
2018-01-1947
This paper presents a demonstrator developed in the European CleanSky2 project MISSION (Modelling and Simulation Tools for Systems Integration on Aircraft). Its scope is the development towards a seamless integrated, interconnected toolchain enabling more efficient processes with less rework time in todays, highly collaborative aerospace domain design applications. The demonstration described here, consists of an open, modular and multitool platform implementation, using specific techniques to achieve fully traceable (early stage) requirements verification by virtual testing. The most promising approach is a model based integration along the whole process from requirements definition to the verified, integrated (and certified) system. Extending previous publications in this series, the paper introduces the motivation and briefly describes the technical background and a potential implementation of a workflow suitable for that target.
Technical Paper

From Virtual Testing to HIL Testing - Towards Seamless Testing

2014-09-16
2014-01-2165
To make the development of complex aircraft systems manageable and economical, tests must be performed as early as possible in the development process. The test goals are already set in advance before the first hardware for the ECUs exists, to be able to make statements about the system functions or possible malfunctions. This paper describes the requirements on and solutions for test systems for ECUs that arise from these goals. It especially focuses on how a seamless workflow and consistent use of test systems and necessary software tools can be achieved, from the virtual test of ECUs, which exist only as models, up to the test of real hardware. This will be shown in connection with a scalable, fully software-configurable hardware-in-the-loop (HIL) technology. The paper also covers the seamless use of software tools that are required for HIL testing throughout the different test phases, enabling the reuse of work products throughout the test phases.
Journal Article

Monitoring of Virtual and Hybrid Test Benches in the Cloud

2021-03-02
2021-01-0007
In recent years, the concept of hybrid test systems consisting of real and virtual parts emerged in the aerospace industry. The concept features a communication infrastructure that provides the standardized transport mechanisms required for interoperability. For example, this allows system integrators to easily reuse and exchange laboratory tests means, even if they originate from different suppliers. The “Virtual and Hybrid Testing Next Generation” (VHTNG) research project aims at creating a standard for such an infrastructure. One central aspect is the unified monitoring and control of the test equipment. So far, VHTNG has primarily focused on monitoring and controlling related aspects of the test bench in a local environment. However, recent events have repeatedly shown that it becomes increasingly important to monitor and control test benches remotely.
X