Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Characterization of Flow Asymmetry During the Compression Stroke Using Swirl-Plane PIV in a Light-Duty Optical Diesel Engine with the Re-entrant Piston Bowl Geometry

2015-04-14
2015-01-1699
Flow field asymmetry can lead to an asymmetric mixture preparation in Diesel engines. To understand the evolution of this asymmetry, it is necessary to characterize the in-cylinder flow over the full compression stroke. Moreover, since bowl-in-piston cylinder geometries can substantially impact the in-cylinder flow, characterization of these flows requires the use of geometrically correct pistons. In this work, the flow has been visualized via a transparent piston top with a realistic bowl geometry, which causes severe experimental difficulties due to the spatial and temporal variation of the optical distortion. An advanced optical distortion correction method is described to allow reliable particle image velocimetry (PIV) measurements through the full compression stroke. Based on the ensemble-averaged velocity results, flow asymmetry characterized by the swirl center offset and the associated tilting of the vortex axis is quantified.
Technical Paper

Optical Measurements of Soot Particle Size, Number Density, and Temperature in a Direct Injection Diesel Engine as a Function of Speed and Load

1994-03-01
940270
In-cylinder measurements of soot particle size, number density, and temperature have been made using optical measurements in a direct injection diesel engine. The measurements were made at one location approximately 5 mm long and 1.5 mm wide above the bowl near the head. Two optical techniques were used simultaneously involving light scattering, extinction and radiation. An optical probe was designed and mounted in a modified exhaust valve which introduced a beam of light into the cylinder and collected the scattered and radiating light from the soot. The resulting measurements were semi-quantitative, giving an absolute uncertainty on the order of ± 50% which was attributed mainly to the uncertainty of the optical properties of the soot and the heterogeneous nature of the soot cloud. Measurements at three speeds and three overall equivalence ratios were made.
Technical Paper

Quantitative Measurements of Residual and Fresh Charge Mixing in a Modern SI Engine Using Spontaneous Raman Scattering

1999-03-01
1999-01-1106
Line-imaging of Raman scattered light is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (premixed C3H8) in a modern 4-valve spark-ignition engine operating at idle. The measurement volume consists of 16 adjacent sub-volumes, each 0.27 mm in diameter × 0.91 mm long, giving a total measurement length of 14.56 mm. Measurements are made 3 mm under the centrally-located spark plug, offset 3 mm from the spark plug center towards the exhaust valves. Data are taken in 15 crank angle degree increments starting from top center before the intake stroke (-360 CAD) through top center of the compression stroke (0 CAD).
Technical Paper

Determination of Diesel Injector Nozzle Characteristics Using Two-Color Optical Pyrometry

2002-03-04
2002-01-0746
An investigation of several diesel injector nozzles that produced different engine emissions performance was performed. The nozzle styles used were two VCO type nozzles that were manufactured using two different techniques, and two mini-sac nozzles that provided comparison. Fired experiments were conducted on a Detroit Diesel Series 50 engine. Optical access was obtained by substituting a sapphire window for one exhaust valve. Under high speed, high load, retarded injection timing conditions, it was discovered that each nozzle produced different specific soot and NOx emissions. High-speed film images were obtained. It was discovered that the temperature and KL factor results from the 2-color optical pyrometry showed significant differences between the nozzles. The authors propose the possibility that differences in air entrainment, caused by potential differences in CD due to surface finish, may contribute to the variance in emissions performance.
X