Refine Your Search

Topic

Search Results

Standard

Air Conditioning of Aircraft Cargo

2020-05-12
CURRENT
AIR806B
The report presents air conditioning data for aircraft cargo which is affected by temperature, humidity, ventilation rate and atmospheric pressure. The major emphasis is on conditioning of perishable products and warm-blooded animals. The report also covers topics peculiar to cargo aircraft or which are related to the handling of cargo.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC AIRPLANE CABIN

1943-01-01
HISTORICAL
ARP89
These specifications are written to cover automatic temperature controls under three classifications, namely: A AUTOMATIC TEMPERATURE CONTROLS - GENERAL - Dealing with features applicable to all types and uses. B AUTOMATIC TEMPERATURE CONTROLS - MILITARY AND COMMERCIAL - Covering features applicable to military aircraft and commercial aircraft. C DESIRABLE DESIGN FEATURES - General information for use of those concerned in meeting the requirements contained herein.
Standard

GUIDE FOR QUALIFICATION TESTING OF AIRCRAFT AIR VALVES

1990-02-28
HISTORICAL
ARP986B
This Aerospace Recommended Practice (ARP) defines tests to be performed on hydraulically, electrically, pneumatically, and mechanically actuated air valves. They may be further defined as those valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff).
Standard

GUIDE FOR QUALIFICATION TESTING OF AIRCRAFT AIR VALVES

1982-10-01
HISTORICAL
ARP986A
This document defines tests to be performed on electrically, pneumatically, and mechanically actuated (regulating, modulating, and shutoff) air valves. The valves may be further defined as those which function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions to maintain a calibrated duct air condition (i.e., air flow, air pressure, air temperature, air pressure ratio, etc.). The requirements of this document should govern for all qualification tests unless different requirements are established by the detail specifications.
Standard

Guide for Qualification Testing of Aircraft Air Valves

2008-11-06
HISTORICAL
ARP986C
This Aerospace Recommended Practice (ARP) defines tests to be performed on hydraulically, electrically, pneumatically, and mechanically actuated air valves. They may be further defined as those valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff).
Standard

Air Cycle Air Conditioning Systems for Air Vehicles

2019-08-20
CURRENT
AS4073B
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

Air Cycle Air Conditioning Systems for Military Air Vehicles

2000-03-01
HISTORICAL
AS4073
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E (AS) and MIL-E-87145 (USAF). Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

Aircraft Humidification

2015-11-09
HISTORICAL
AIR1609A
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Aircraft Humidification

2021-01-14
CURRENT
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Environmental Control for Civil Supersonic Transport

2011-08-10
CURRENT
AIR746C
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

Environmental Control for Civil Supersonic Transport

2006-06-28
HISTORICAL
AIR746B
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

ENVIRONMENTAL CONTROL SYSTEMS LIFE CYCLE COST

1985-10-01
HISTORICAL
AIR1812
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Environmental Control Systems Life Cycle Cost

2017-02-07
CURRENT
AIR1812B
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Environmental Control Systems Life Cycle Cost

2010-01-20
HISTORICAL
AIR1812A
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Spacecraft Thermal Balance

2004-09-08
HISTORICAL
AIR1168/12
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

Spacecraft Thermal Balance

2011-07-25
CURRENT
AIR1168/12A
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

Aerospace Pressurization System Design

2011-07-25
CURRENT
AIR1168/7A
The pressurization system design considerations presented in this AIR deal with human physiological requirements, characteristics of pressurization air sources, methods of controlling cabin pressure, cabin leakage control, leakage calculation methods, and methods of emergency cabin pressure release.
Standard

Aerospace Pressurization System Design

2004-06-22
HISTORICAL
AIR1168/7
The pressurization system design considerations presented in this AIR deal with human physiological requirements, characteristics of pressurization air sources, methods of controlling cabin pressure, cabin leakage control, leakage calculation methods, and methods of emergency cabin pressure release.
X