Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Standard

GUIDE FOR PREPARING AN ECS COMPUTER PROGRAM USER'S MANUAL

1980-06-01
HISTORICAL
ARP1623
These recommendations apply to the user's manual for any computer program pertaining to aircraft ECS. This includes computer programs for: a Cabin air conditioning and pressurization performance. b Avionics equipment cooling system performance. c Engine bleed air system performance. d Compartment and equipment thermal analysis. e Environmental protection system performance. These recommendations apply to user's manuals for generalized computer programs as well as those for a specific component or system.
Standard

Spacecraft Equipment Environmental Control

2006-03-24
HISTORICAL
AIR1168/13
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: 1 Establishment of design requirements. 2 Evaluation of properties of materials. 3 Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
Standard

Spacecraft Equipment Environmental Control

2011-07-25
CURRENT
AIR1168/13A
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: 1 Establishment of design requirements. 2 Evaluation of properties of materials. 3 Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
Standard

Environmental Control System Contamination

2020-05-29
CURRENT
AIR1539C
This SAE Aerospace Information Report (AIR) includes a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc. are also covered in this AIR. This publication is concerned with contamination sources which interface with ECS and fuel tank inerting systems, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsibility of the ECS designer.
Standard

Environmental Control System Contamination

2003-10-31
HISTORICAL
AIR1539A
This publication will be limited to a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc., are not covered in this AIR. It will cover all contamination sources which interface with ECS, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsibility of the ECS designer.
Standard

HEATER, AIRPLANE, EXHAUST HOT AIR TYPE

1943-01-01
HISTORICAL
ARP86
These specifications are written to cover the subject of exhaust hot air type heaters under three classifications, namely. A EXHAUST HOT AIR TYPE HEATERS - GENERAL - Dealing with features applicable to all makes and users. B EXHAUST HOT AIR TYPE HEATERS - MILITARY AND COMMERCIAL -Covering features applicable to military and commercial aircraft. C DESIRABLE DESIGN FEATURES - General information for use of those concerned with meeting requirements contained herein.
Standard

Environmental Systems Schematic Symbols

2015-10-16
HISTORICAL
ARP780B
This SAE Aerospace Recommended Practice (ARP) provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Appendix A.
Standard

Environmental Systems Schematic Symbols

2020-05-20
CURRENT
ARP780C
This SAE Aerospace Recommended Practice (ARP) provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Appendix A.
Standard

Heater and Accessories, Aircraft Internal Combustion Heat Exchanger Type

2019-10-01
CURRENT
AS8040C
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
Standard

Heater, Aircraft Internal Combustion Heat Exchanger Type

2008-11-06
HISTORICAL
AS8040A
This SAE Aerospace Standard (AS) covers internal combustion heat exchanger type heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

HEATER, AIRCRAFT INTERNAL COMBUSTION HEAT EXCHANGER TYPE

1988-02-01
HISTORICAL
AS8040
This standard covers internal combustion heat exchanger type heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

Heater, Aircraft Internal Combustion Heat Exchanger Type

2013-02-14
HISTORICAL
AS8040B
This SAE Aerospace Standard (AS) covers combustion heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2022-03-21
WIP
ARP699F
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2015-11-09
CURRENT
ARP699E
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
X