Refine Your Search

Topic

Search Results

Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2019-08-13
CURRENT
ARINC843-1
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2020-07-21
CURRENT
ARINC834-8
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. A common set of services that may be used to access specific avionics parameters are described. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB). Supplement 8 includes improvements in the Aviation Data Broadcast Protocol (ADBP), adds support for the Media Independent Aircraft Messaging (MIAM) protocol, and contains data security enhancements. It also includes notification and deprecation of the Generic Aircraft Parameter Service (GAPS) protocol that will be deleted in a future supplement.
Standard

AIRCRAFT DATA NETWORK, PART 1, SYSTEMS CONCEPTS AND OVERVIEW

2019-06-20
CURRENT
ARINC664P1-2
The purpose of this document is to provide an overview of data networking standards recommended for use in commercial aircraft installations. These standards provide a means to adapt commercially defined networking standards to an aircraft environment. It refers to devices such as bridges, switches, routers and hubs and their use in an aircraft environment. This equipment, when installed in a network topology, can optimize data transfer and overall avionics performance.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
CURRENT
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2019-09-19
CURRENT
ARINC791P1-3
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

EXTENSIBLE MARKUP LANGUAGE (XML) ENCODING AND COMPRESSION STANDARD

2019-01-18
CURRENT
ARINC814-1
ARINC 814 defines an XML encoding and compression standard for aviation. It is based on the Open Geospatial Consortium (OGC) Binary XML document. Binary XML encoding is extended in a way that is both flexible and robust. Compression is added on top of the binary encoding. ARINC 814 is expected to be used with Aeronautical Databases, in particular, ARINC Specification 813: Embedded Interchange Format for Terrain Databases, ARINC Specification 815: Embedded Interchange Format for Obstacle Databases, and ARINC Specification 816: Embedded Interchange Format for Airport Mapping Database.
Standard

AOC AIR-GROUND DATA AND MESSAGE EXCHANGE FORMAT

2019-01-02
CURRENT
ARINC633-3
The purpose of ARNC 633 is to specify the format and exchange of Aeronautical Operational Control (AOC) communications. Examples of ARINC 633 AOC Structures/Messages include: Flight Plan, Load Planning (i.e., Weight and Balance and Cargo Planning Load Sheets), NOTAMs, Airport and Route Weather data, Minimum Equipment Lists (MEL) messages, etc. The standardization of AOC messages enable the development of applications shared by numerous airlines on different aircraft types. Benefits include improved dispatchability and reduce operator cost.
Standard

INTEGRATED SURVEILLANCE SYSTEM

2011-06-01
CURRENT
ARINC768-2
This document defines an Integrated Surveillance System (ISS) capable of providing traffic, terrain and weather information to the flight deck crew. Supplement 2 provides enhancements in the traffic surveillance area to support ADS-B Out and ADS-B In functionality, ADS-Re-broadcast capability, and Traffic Information Services Broadcast (TIS-B).
Standard

AERONAUTICAL MOBILE AIRPORT COMMUNICATION SYSTEM (AEROMACS) TRANSCEIVER AND AIRCRAFT INSTALLATION STANDARDS

2017-07-07
CURRENT
ARINC766
This documents defines the Installation Characteristics of an airborne radio transceiver capable of broadband wireless communication with an Airport Surface Network. The Aeronautical Mobile Airport Communications System (AeroMACS) Radio Unit (ARU) will operate in the aeronautical protected frequency of 5091 MHz to 5150 MHz, utilizing the IEEE 802.16e WiMAX protocol. It is intended to offload some of the congested narrowband VHF airport traffic used for ATS and AOC communications. ARU and Antenna Form, Fit, Function and Interfaces are described.
Standard

MARK 1 AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2014-08-29
CURRENT
ARINC791P1-2
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

MARK 3 AVIATION SATELLITE COMMUNICATION SYSTEMS

2017-08-09
CURRENT
ARINC781-7
This document sets forth the desired characteristics of an aviation satellite communication (Satcom) system intended for installation in all types of commercial transport and business aircraft. The intent of this document is to provide general and specific guidance on the form factor and pin assignments for the installation of the avionics primarily for airline use. It also describes the desired operational capability of the equipment to provide data and voice communications, as well as additional standards necessary to ensure interchangeability. This Characteristic specifies equipment using Inmarsat satellites operating in L-band. Ku-band and Ka-band equipment is specified in ARINC Characteristic 791.
Standard

ANALOG AND DISCRETE DATA CONVERTER SYSTEM

1981-09-10
CURRENT
ARINC729-1
This standard sets forth the characteristics of an ADDCS designed for installation in commercial transport aircraft. The ADDCS is intended to process, convert and multiplex analog and discrete signals in order to provide them in digital format described in ARINC 429.
Standard

AIR DATA AND INERTIAL REFERENCE SYSTEM (ADIRS)

2001-07-31
CURRENT
ARINC738A-1
This standard sets forth characteristics for a 4 MCU integrated digital ADIRS intended for installation in subsonic commercial transport aircraft. It is envisioned that the ADIRS will incorporate the capabilities of both an air data system and an inertial reference system.
Standard

AVIATION SATELLITE COMMUNICATION SYSTEM PART 1 AIRCRAFT INSTALLATION PROVISIONS

2012-06-26
CURRENT
ARINC741P1-14
This document defines the characteristics of first generation L-band satellite communication system installations including the avionics equipment. This document provides traditional form, fit, function, and interface standards for the installation of Satcom equipment for use in all types of aircraft. It defines the satellite data unit in a 6 MCU form factor. It also provides a summary description of each avionics component that would comply with this document. Supplement 14 adds references to ARINC Characteristic 781 and address equipment configurations and functionality associated with SwiftBroadband services.
Standard

AUTOMATIC DEPENDENT SURVEILLANCE (ADS)

1993-06-30
CURRENT
ARINC745-2
This standard defines ADS system functions. It describes the ADS to ground-based application end-to-end operation. Includes a brief overview of the entire ADS system in order to aid the reader in understanding the ADS environment.
Standard

INERTIAL REFERENCE SYSTEM

1999-03-19
CURRENT
ARINC704-7
IRS characteristics are defined in this standard. It defines the desired performance of inertial measuring devices and associated electronics specifically designed for installation in commercial transport aircraft. This system provides the basic outputs for aircraft angular rate and acceleration, and computed outputs of altitude, true heading, velocity and present position in a 10 MCU form factor.
X