Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations

2008-04-14
2008-01-1378
In the present study a reduced chemical reaction mechanism for biodiesel surrogate fuel was developed and validated for multi-dimensional engine combustion simulations. An existing detailed methyl butanoate mechanism that contained 264 species and 1219 reactions was chosen to represent the oxygenated portion of the fuel. The reduction process included flux analysis, ignition sensitivity analysis, and optimization of reaction rate constants under constant volume conditions. The current reduced mechanism consists of 41 species and 150 reactions and gives predictions in excellent agreement with those of the comprehensive mechanism. In order to validate the mechanism under biodiesel-fueled engine conditions, it was combined with another skeletal mechanism for n-heptane oxidation. This combined reaction mechanism can be used to adjust the energy content of the fuel, and account for diesel/biodiesel blend engine simulations.
Journal Article

Combustion Model for Biodiesel-Fueled Engine Simulations using Realistic Chemistry and Physical Properties

2011-04-12
2011-01-0831
Biodiesel-fueled engine simulations were performed using the KIVA3v-Release 2 code coupled with Chemkin-II for detailed chemistry. The model incorporates a reduced mechanism that was created from a methyl decanoate/methyl-9-decenoate mechanism developed at the Lawrence Livermore National Laboratory. A combination of Directed Relation Graph, chemical lumping, and limited reaction rate tuning was used to reduce the detailed mechanism from 3299 species and 10806 reactions to 77 species and 209 reactions. The mechanism was validated against its detailed counterpart and predicted accurate ignition delay times over a range of relevant operating conditions. The mechanism was then combined with the ERC PRF mechanism to include n-heptane as an additional fuel component. The biodiesel mechanism was applied in KIVA using a discrete multi-component model with accurate physical properties for the five common components of real biodiesel fuel.
Journal Article

A Surrogate Fuel Formulation Approach for Real Transportation Fuels with Application to Multi-Dimensional Engine Simulations

2014-04-01
2014-01-1464
Real transportation fuels, such as gasoline and diesel, are mixtures of thousands of different hydrocarbons. For multidimensional engine applications, numerical simulations of combustion of real fuels with all of the hydrocarbon species included exceeds present computational capabilities. Consequently, surrogate fuel models are normally utilized. A good surrogate fuel model should approximate the essential physical and chemical properties of the real fuel. In this work, we present a novel methodology for the formulation of surrogate fuel models based on local optimization and sensitivity analysis technologies. Within the proposed approach, several important fuel properties are considered. Under the physical properties, we focus on volatility, density, lower heating value (LHV), and viscosity, while the chemical properties relate to the chemical composition, hydrogen to carbon (H/C) ratio, and ignition behavior. An error tolerance is assigned to each property for convergence checking.
Technical Paper

Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines

2007-10-29
2007-01-4030
In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both conventional diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study.
Technical Paper

Neutron Imaging of Diesel Particulate Filters

2009-11-02
2009-01-2735
This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500 rpm, 2.6 bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Modeling the Influence of Molecular Interactions on the Vaporization of Multi-component Fuel Sprays

2011-04-12
2011-01-0387
A vaporization model for realistic multi-component fuel sprays is described. The equilibrium at the interface between liquid droplets and the surrounding gas is obtained based on the UNIFAC method, which considers non-ideal molecular interactions that can greatly enhance or suppress the vaporization of the components in the system compared to predictions from ideal mixing using Raoult's Law, especially for polar fuels. The present results using the UNIFAC method are shown to be able to capture the azeotropic behaviors of polar molecule blends, such as mixtures of benzene and ethanol, benzene and iso-propanol, and ethanol and water [1]. Predicted distillation curves of mixtures of ethanol and multi-component gasoline surrogates are compared to those from experiments, and the model gives good improvements on predictions of the distillation curves for initial ethanol volume fractions ranging from 0% to 100%.
Technical Paper

Ethanol Fumigation of a Turbocharged Diesel Engine

1981-04-01
810680
Ethanol has been injected through an atomizing nozzle into the intake manifold of a four cylinder turbocharged diesel engine. It was found that to avoid liquid droplet impingement on the compressor blades the injector needed to be located downstream of the compressor, in the high pressure section of the inlet manifold. 160 proof and 200 proof alcohols were investigated with a series of percentage substitutions at different speeds and loads. The fumigation of ethanol resulted in a slight improvement in thermal efficiency at high loads and a small reduction at light loads. The ignition delay and rate of pressure rise also increased significantly when ethanol was added to the engine. A change in the proof of ethanol from 160 to 200 did not produce any noticeable change in engine performance. Emission measurements were also made and are discussed. The problem of obtaining uniform cylinder to cylinder distribution of alcohol has been encountered.
Technical Paper

The Prediction of Auto Ignition in a Spark-Ignited Engine

1984-10-01
841337
A constant volume combustion simulation has been used to compute the ignition delays of pure fuels and binary fuel mixtures in air. Minima in the ignition delays were predicted by a comprehensive chemical kinetic mechanism for binary fuel mixtures with methane. A model has been developed to predict the occurrence of autoignition in a spark ignited engine. Experimental pressure data from a CFR engine were used in the model to simulate the temperature-pressure history of the end gas and to determine the time when autoignition occurred. Comprehensive chemical kinetic mechanisms were used to predict the reactions in the end gas. Methanol, methane, ethane, ethylene, propane and n-butane were used as fuels. The initial temperatures in the model were adjusted to give agreement between predicted and observed autoignition. Engine data for methane-ethane mixtures indicated a problem with the kinetic mechanism.
Technical Paper

Aldehyde and Unburned Fuel Emission Measurements from a Methanol-Fueled Texaco Stratified Charge Engine

1985-10-01
852120
A Texaco L-163S TCCS (Texaco Controlled Combustion System) engine was operated with pure methanol to investigate the origin and mechanism of unburned fuel (UBF) and formaldehyde emissions. The effects of engine load, speed and coolant temperature on the exhaust emissions were studied using both continuous and time-resolved sampling methods. Within the range studied, increasing the engine load resulted in a decrease of the exhaust UBF emissions and an increase in the formaldehyde emissions. Engine speed had little effect on both UBF and formaldehyde emissions. Decreasing the engine coolant temperature from 85°C to 45°C caused the exhaust UBF emissions to approximately double and the formaldehyde emission to increase approximately 20 percent. It is hypothesized that both fuel impingement and spray tailing are responsible for the high UBF emissions. In-cylinder formation of formaldehyde was found to be the major source of the exhaust aldehyde emissions in this experiment.
Technical Paper

Predictions of Autoignition in a Spark-Ignition Engine Using Chemical Kinetics

1986-03-01
860322
A model developed to predict outoignition is used with data from a premixed charge, spark-ignition engine. A detailed chemical kinetics mechanism is used to predict the reactions which occur in the end-gas and lead to autoignition. Experimental pressure data from a CFR engine are used in the model to determine end-gas temperatures. The initial temperature at the time of spark must be increased above the bulk temperature for the predicted time of outoignition to agree with the observed time. A method for estimating the initial temperature based on an adiabotic compression from the time of intake valve closing is presented. The predictions of the model are examined over a range of engine speeds and fuel-air equivalence ratios. The magnitude by which the initial temperature must be increased above the bulk temperature decreases with increasing engine speed. This magnitude follows a trend which can be related to a heat transfer correlation.
X