Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Cost Awareness in Design: The Role of Data Commonality

Enhanced information management techniques made available through emerging Information Technology platforms hold a promise of providing significant improvements in both the effectiveness and efficiency of developing complex products. Determining actual management implementations that deliver on this promise has often proven elusive. Work in conjunction with the Lean Aircraft Initiative at MIT has revealed a straight forward use of Information Technology that portends significant cost reductions. By integrating previously separate types of data involved in the process of product development, engineers and designers can make decisions that will significantly reduce ultimate costs. Since the results presented are not specific to particular technologies or manufacturing processes, the conclusions are broadly applicable.
Technical Paper

Predicting Product Manufacturing Costs from Design Attributes: A Complexity Theory Approach

This paper contains both theorems and correlations based on the idea that there is a uniform metric for measuring the complexity of mechanical parts. The metric proposed is the logarithm of dimension divided by tolerance. The theorems prove that, on the average, for a given manufacturing process, the time to fabricate is simply proportional to this metric. We show corrleations for manual turning (machine lathe process), manual milling (machine milling process), and the lay-up of composite stringers. In each case the accuracy of the time estimate is as good as that of traditional cost estimation methods, but the effort is much less. The coefficient for composite lay-up compares well to that obtained from basic physiological data (Fitts Law).
Technical Paper

Engine Experiments on the Effects of Design and Operational Parameters on Piston Secondary Motion and Piston Slap

Experiments were done to quantify the dynamic motion of the piston and oil-film during piston impact on the cylinder bore, commonly known as “piston slap.” Parameters measured include engine block vibration, piston-skirt to liner separation, oil-film thickness between the piston and liner, and other engine operating conditions. Experimental parametric studies were performed covering the following: engine operating parameters - spark timing, liner temperature, oil-film thickness, oil type, and engine speed; and engine design parameters - piston-skirt surface waviness, piston-skirt/cylinder-liner clearance, and wrist-pin offset. Two dynamic modes of piston-motion-induced vibration were observed, and effects of changes in engine operating and design parameters were investigated for both types of slap. It was evident that engine design parameters have stronger effects on piston slap intensity, with piston-skirt/liner clearance and wrist-pin offset being the dominant parameters.
Technical Paper

Product Development with Suppliers - The Role of Database Commonality

Capturing the cost and schedule savings available by the best use of first tier suppliers is a key goal of any assembler (prime contractor) of manufactured products. Ensuring database commonality is a key enabling practice in reaching this goal. In this paper, a simple supplier cost model is presented, and its implications as to supplier strategy are discussed. A number of different supplier strategies are reported on, based on case studies. The types and amounts of information which will be easily available to the assembler are qualified. The impact of supplier strategy on database commonality is described.
Technical Paper

Direct Observation of the Friction Reduction of Multigrade Lubricants

The oil film thickness distribution between the top ring and liner was observed using laser fluorescence (LF). Five different commercial lubricants, two single grades and three multigrades, were studied at two azimuthal, mid-stroke locations for five speed/load combinations in a small IDI diesel engine. Cavitation is never observed. The lubricant always separates tangent to the ring surface. The rheology of the oil flow under the ring is consistent with a non-Newtonian viscosity without elasticity. The difference between lubricant type (single or multigrade) corresponds to differences in inlet and outlet conditions. Using an analytical model together with the measured oil distributions, calculations demonstrate a difference in friction between single and multigrade lubricants. The multigrade lubricants have a lower friction coefficient, consistent with improvements in fuel economy reported in the literature.
Technical Paper

Experimental Survey of Lubricant-Film Characteristics and Oil Consumption in a Small Diesel Engine

Parallel measurements of lubricant-film behavior and oil consumption in two identical small production IDI diesel engines are presented. Oil consumption was measured using tritium as a radioactive tracer, and instantaneous film thickness data between the piston and liner were obtained using laser fluorescence diagnostics. The data covered single- and multi-grade lubricants and five different ring configurations (two-piece vs three-piece rings at various ring tensions). The data illustrate (a) oil-film profiles under the rings, especially around the leading and trailing edges, (b) accumulation of oil on piston lands and skirt, (c) circumferential variations around the bore, (d) observations on ring rotation, and (e) the piston-skirt oil-pumping mechanism. Effects of lubricants and piston-ring configurations on oil-film characteristics are investigated, and the oil consumption data are compared with oil-film thickness measurements.
Technical Paper

Heat Transfer in the End Gas

This paper describes experimental and theoritical studies of a turbulent combustion bomb. We find a correlation between heat transfer to the wall and the Initial turbulence intensity. Wall temperature and pressure measurements were made for three levels of initial turbulence. All tests were performed with an equivalence ratio of 1.0, and the turbulence intensity was controlled by varying the time delay between mixture intake and spark ignition. Assuming one-dimensional conduction, the surface heat flux was computed from the wall temperature data. Gas temperatures were computed from the pressure data assuming isentropic compression. Based on turbulent velocity measurements made in previous studies, these results permitted a correlation of Nusselt number with turbulent Reynolds number. Using this correlation, we estimate the heat transfer in the end gas and its effect on the gas temperature.
Technical Paper

Rapid Distortion Theory Applied to Turbulent Combustion

A technique of calculating the evolution of turbulence during the combustion phase of a reciprocating engine cycle is presented. The method is based on a local linearization of the full non-linear equations of motion. It is valid when the turbulence is distorted more rapidly by the changes in mean flows than it interacts with itself. The theory requires as input strain rates of the deterministic mean motion, and the initial state of turbulence. Calculations are presented for the particular case of a cylindrical chamber geometry. In the burning process it is assumed that the spark plug is located on the cylinder axis and the strain field is that established by the flame front. The theory calculates the turbulence parameters during the combustion period. Combustion rates, and durations, as a function of equivalence ratio and the initial turbulent and thermodynamic conditions.
Technical Paper

The Possible Role of Surface Tension in the Reduction of Top Ring Drag

In a small (4.5 KW) diesel engine, Laser Induced Fluorescence (LIF) has been used to produce detailed oil film thickness measurements around the top piston ring and liner near midstroke. The flow is “Newtonian” under the ring in the sense that using a high shear rate viscosity at the liner temperature is appropriate. The geometry corresponds everywhere to that required for a valid Reynolds approximation. Classical boundary conditions are not applicable for the high strain rates (106-107 s-1) under the piston rings of typical modem engines. A new boundary condition is developed to explain the data. The exit surface shear stress is shown to scale with a Marangoni-like (surface tension gradient) effect. By increasing surface tension, it is possible to make substantial reductions in friction for a fixed high shear viscosity.
Technical Paper

Development of Engine Lubricant Film Thickness Diagnostics Using Fiber Optics and Laser Fluorescence

An apparatus was designed and applied to measure the oil-film thickness in a production engine using the principle of laser-induced fluorescence. The apparatus incorporated fiber optics technology in its design with an aim to improve the ease of installation, portability, durability, spatial resolution and signal-to-noise ratio of previous designs using conventional optics, which hitherto have been used almost exclusively in studying oil-film characteristics in detail. Bench tests and engine tests were conducted to study the optimum combination of system components and to evaluate the performance of the design. These tests indicate that the goals of the design have been achieved. The increased spatial resolution enabled more precise identification of important lubricant features around the piston rings.
Technical Paper

Calibration of Laser Fluorescence Measurements of Lubricant Film Thickness in Engines

A laser fluorescent diagnostic method was employed to measure lubricant film thickness on the cylinder wall/piston interface of two engines. The system output signal was calibrated using lubricant samples of known thickness, and by comparison of a known piston ring profile to measured lubricant film contours. Agreement of the results of the two calibration methods was within 5%. A relative calibration was performed with three oils having different additive packages, and with an oil contaminated through use in a commercially operated engine. The calibration coefficients for the oils, relating output voltage to film thickness, varied within a factor up to two, depending on lubricant type and age. The laser fluorescent apparatus was installed for use with a single cylinder test version of the Cummins VT-903 diesel engine. An optical passage was created through the block and cylinder wall using a quartz window.
Technical Paper

The Theory of Cost Risk in Design

In a recent paper (Hoult & Meador, [1]) a novel method of estimating the costs of parts, and assemblies of parts, was presented. This paper proposed that the metric for increments of cost was the function log (dimension/tolerance). Although such log functions have a history,given in [1], starting with Boltzman and Shannon, it is curious that it arises in cost models. In particular, the thermodynamic basis of information theory, given by Shannon [2], seems quite implausible in the present context. In [1], we called the cost theory “Complexity Theory”, mainly to distinguish it from information theory. A major purpose of the present paper is to present a rigorous argument of how the log function arises in the present context. It happens that the agrument hinges on two key issues: properties of the machine making or assembling the part, and a certain limit process. Neither involves thermodynamic reasoning.