Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

1997-10-01
975585
Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
Technical Paper

New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology

1998-09-28
985509
This paper critically evaluates the use of Neural Networks (NNs) as metamodels for design applications. The specifics of implementing a NN approach are researched and discussed, including the type and architecture appropriate for design-related tasks, the processes of collecting training and validation data, and training the network, resulting in a sound process, which is described. This approach is then contrasted to the Response Surface Methodology (RSM). As illustrative problems, two equations to be approximated and a real-world problem from a Stability and Controls scenario, where it is desirable to predict the static longitudinal stability for a High Speed Civil Transport (HSCT) at takeoff, are presented. This research examines Response Surface Equations (RSEs) as Taylor series approximations, and explains their high performance as a proven approach to approximate functions that are known to be quadratic or near quadratic in nature.
Technical Paper

Bi-level Integrated System Synthesis: A Proposed Application to Aeroelastic Constraint Analysis in a Conceptual Design Environment

2003-09-08
2003-01-3060
The projection of aeroelastic constraints in the design space has long been a want in the design process of vehicles. These properties are usually not established accurately until later phases of design. The desire is to bring another interactive constraint to the conceptual design phase and allow the designer to see the impact of design decisions on aeroelastic characteristics. Even though a number of analysis and optimization tools have been developed to support aeroelastic analysis and optimization in the flight vehicle design process, the toolbox is far from being complete. The results often cannot be obtained in a manner timely enough and the natural division of the engineering team into specialty groups is not supported very well by the aerodynamic-structures monolithic codes typically in the above toolbox. The monolithic codes are also not amenable to the use of concurrent processing now made available by computer technology.
Technical Paper

Formulation of an Integrating Framework for Conceptual Object-Oriented Systems Design

2003-09-08
2003-01-3053
In this paper, a brief overview is given of the different alternatives to an integrating computational framework. A new framework will be introduced, which incorporates the latest computational techniques and more importantly a mind-set emphasizing flexibility, modularity, portability and re-usability. This introduction will include a thorough review of the fundamental design decisions that went into developing this new integrated computational framework. Distributed object computing extends an object-oriented system which allows objects to interact across heterogenous networks and interoperate as a unified whole. Integrated computing frameworks are discussed, together with data transport techniques such as Extensible Markup Language (XML) and Simple Object Access Protocol (SOAP) to achieve platform, code and meta-model independent integration.
Technical Paper

A Technique for Use of Gaussian Processes in Advanced Meta-Modeling

2003-09-08
2003-01-3051
Current robust design methods rely heavily on meta-modeling techniques to reduce the total computational effort of probabilistic explorations to a combinatorially manageable size. Historically most of these meta-models were in the form of Response Surface Equations (RSE). Recently there has been interest in supplementing the RSE with techniques that better handle non-linear phenomena. One technique that has been identified is the Gaussian Process (GP). The GP has fewer initial assumptions when compared to the linear methods used by RSEs and, therefore, fewer limitations. The initial implementation and employment techniques proposed in current literature for use with the GP are barely modified versions of those used for RSEs. A better, more tailored technique needs to be developed to properly make use of the nature of the GP, and minimize the effect of some of its limitations. Such a technique would allow for rapid development of a reusable, computationally efficient and accurate GP.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

Program and Design Decisions in an Uncertain and Dynamic Market: Making Engineering Choices Matter

2005-10-03
2005-01-3433
The success of a modern, complex engineering program is inherently a dynamic economic exercise. Because of this it is not possible to fully grasp what decisions are important to the success of a program using only the typical static or “frozen” design methods and processes. This paper attempts to provide a basic understanding of these design processes and illustrate what they leave to be desired when used in a true market environment. Further, this paper illustrates a dynamic method using tools from engineering, management, and finance to overcome these weaknesses. The dynamic environment allows decision parameters and metrics to change, along with the potential for true competition. Furthermore, it allows the engineer to determine which design choices matter most to the creation of a successful program and how to make the most appropriate choices in the face of uncertainty.
Technical Paper

Supersonic Business Jet Design and Requirements Exploration using Multiobjective Interactive Genetic Algorithms

2005-10-03
2005-01-3398
Although market research has indicated that there is significant demand for a supersonic business aircraft, development of a feasible concept has proven difficult. Two factors contributing to this difficulty are the uncertain nature of the vehicle’s requirements and the fact that conventional design methods are inadequate to solve such non-traditional problems. This paper describes the application of a multiobjective genetic algorithm to the design space exploration of such a supersonic business jet. Results obtained using this method are presented, and give insight into the important decisions that must be made at the early stages of a design project.
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Technology Portfolio Assessments Using a Multi-Objective Genetic Algorithm

2004-11-02
2004-01-3144
This paper discusses the use of a Multi-Objective Genetic Algorithm to optimize a technology portfolio for a commercial transport. When incorporating technologies into a conceptual design, there are often multiple competing objectives that determine the benefits and costs of a certain portfolio. The set of designs that achieves the best values of these objectives will fall along a Pareto front that outlines the tradeoffs which will give the optimal design. Multi-Objective Genetic Algorithms determine the Pareto set by giving higher priority to dominant portfolios in the evolutionary optimization techniques of selection and reproduction. When determining the final Pareto optimal set it is important to ensure that only compatible portfolios of technologies are present.
Technical Paper

A Technique for Testing and Evaluation of Aircraft Flight Performance During Early Design Phases

1997-10-01
975541
A technique is proposed for examining complex behaviors in the “pilot - vehicle - operational conditions” system using an autonomous situational model of flight. The goal is to identify potentially critical flight situations in the system behavior early in the design process. An exhaustive set of flight scenarios can be constructed and modeled on a computer by the designer in accordance with test certification requirements or other inputs. Distinguishing features of the technique include the autonomy of experimentation (the pilot and a flight simulator are not involved) and easy planning and quick modeling of complex multi-factor flight cases. An example of mapping airworthiness requirements into formal scenarios is presented. Simulation results for various flight situations and aircraft types are also demonstrated.
Technical Paper

A Method for Concept Exploration of Hypersonic Vehicles in the Presence of Open & Evolving Requirements

2000-10-10
2000-01-5560
Several unique aspects of the design of hypersonic aerospace systems necessitate a truly multidisciplinary approach from the outset of the program. These coupled with a vague or changing requirements environment, provide an impetus for the development of a systematic and unified approach for the exploration and evaluation of alternative hypersonic vehicle concepts. The method formulated and outlined in this paper is founded upon non-deterministic conceptual & preliminary design formulations introduced over the past decade and introduces the concept of viewing system level requirements in a similar manner. The proposed method is then implemented for the concept exploration and design of a Hypersonic Strike Fighter in the presence of ambiguous open and/or evolving requirements.
Technical Paper

Use of Flight Simulation in Early Design: Formulation and Application of the Virtual Testing and Evaluation Methodology

2000-10-10
2000-01-5590
In current design practices, safety, operational and handling criteria are often overlooked until late design stages due to the difficulty in capturing such criteria early enough in the design cycle and in the presence of limited and uncertain knowledge. Virtual (flight) testing and evaluation, based on autonomous modeling and simulation, is proposed as a solution to this shortcoming. The methodology enables one to evaluate vehicle behavior in relatively complex situations through a series of specific flight scenarios. Bringing this methodology to conceptual design requires the creation of an automatic link between the design database and the autonomous flight simulation environment. This paper describes the creation of such a link and an implementation of the Virtual Testing and Evaluation methodology with the use of an advanced design concept.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
X