Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Standard

ELECTROMAGNETIC SUSCEPTIBILITY PROCEDURES FOR VEHICLE COMPONENTS (EXCEPT AIRCRAFT)

1984-06-01
HISTORICAL
J1113_198406
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

ELECTROMAGNETIC SUSCEPTIBILITY PROCEDURES FOR VEHICLE COMPONENTS (EXCEPT AIRCRAFT)

1978-06-01
HISTORICAL
J1113A_197806
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

ELECTROSTATIC DISCHARGE TEST FOR VEHICLES

1988-10-01
HISTORICAL
J1595_198810
This SAE Information Report defines the test methods and specifications for the electrostatic discharge sensitivity of passenger cars, multipurpose passenger vehicles, trucks and buses.
Standard

VEHICLE ELECTROMAGNETIC RADIATED SUSCEPTIBILITY TESTING USING A LARGE TEM CELL

1982-08-01
HISTORICAL
J1407_198208
This information report gives the procedures for use and operation of a large transverse electromagnetic (TEM) mode cell for the determination of electromagnetic (EM) radiated susceptibility of equipment, subsystems and systems (whose dimensions are less than 3 m × 6 m × 18 m) in the frequency range 10 kHz–20 MHz. Several large TEM cells have been designed and constructed by various organizations for EMP and high power CW testing. Two cell designs and associated instrumentation are included for example purposes in this report. Other cell configurations have also been constructed. Users should consult the literature before undertaking a project of this magnitude for other cell and instrumentation designs.
Standard

VEHICLE ELECTROMAGNETIC RADIATED SUSCEPTIBILITY TESTING USING A LARGE TEM CELL

1988-03-01
HISTORICAL
J1407_198803
This information report gives the procedures for use and operation of a large transverse electromagnetic (TEM) mode cell for the determination of electromagnetic (EM) radiated susceptibility of equipment, subsystems and systems (whose dimensions are less than 3 m × 6 m × 18 m) in the frequency range 10 kHz - 20 MHz. Several large TEM cells have been designed and constructed by various organizations for EMP and high power CW testing. Two cell designs and associated instrumentation are included for example purposes in this report. Other cell configurations have also been constructed. Users should consult the literature before undertaking a project of this magnitude for other cell and instrumentation designs.
Standard

MEASUREMENT OF ELECTROMAGNETIC RADIATION FROM MOTOR VEHICLES (20-1000 MHz)

1968-08-01
HISTORICAL
J551A_196808
This standard covers the measurement of radiation from all motor vehicle sources (including auxiliary engines) with the exception of short duty cycle equipment, such as starting motors, window regulators, turn signals, etc., over a frequency range of 20-1000 MHz.
Standard

MEASUREMENT OF ELECTROMAGNETIC RADIATION FROM A MOTOR VEHICLE OR OTHER INTERNAL-COMBUSTION-POWERED DEVICE (EXCLUDING AIRCRAFT) (20-1000 MHz)

1974-02-01
HISTORICAL
J551C_197402
This standard covers the measurement of electromagnetic radiation from a motor vehicle or other internal-combustion-powered device (excluding aircraft) over a frequency range of 20-1000 MHz. In the case of motor vehicle sources, auxiliary engines mounted on the vehicle are included and short-duty cycle equipment (such as starting motors, window regulators, turn signals, flashing warning lights, etc.) are excluded.
Standard

MEASUREMENT OF ELECTROMAGNETIC RADIATION FROM MOTOR VEHICLES (20-1000 MHz)

1972-11-01
HISTORICAL
J551A_197211
This standard covers the measurement of radiation from all motor vehicle sources (including auxiliary engines) with the exception of short duty cycle equipment, such as starting motors, window regulators, turn signals, etc., over a frequency range of 20-1000 MHz.
Standard

Immunity to Conducted Transients on Power Leads

2023-03-20
CURRENT
J1082_202305
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Vehicle Electromagnetic Immunity—Power Line Magnetic Fields

2010-01-07
HISTORICAL
J551/17_201001
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general information, definitions, practical use, and basic principles of the test procedure.
Standard

Vehicle Electromagnetic Immunity - Power Line Magnetic Fields

2015-07-22
CURRENT
J551/17_201507
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general information, definitions, practical use, and basic principles of the test procedure.
Standard

Vehicle Electromagnetic Immunity - Electrostatic Discharge (ESD)

2020-05-29
CURRENT
J551/15_202005
This SAE Standard specifies the ESD test methods and procedures necessary to evaluate electronic modules intended for vehicle use. It describes test procedures for evaluating electronic modules in complete vehicles. A procedure for verifying the simulator that is used to generate the electrostatic discharges is given in Appendix A. Functional status classifications for immunity to ESD are given in Appendix B.
Standard

Vehicle Electromagnetic Immunity—Electrostatic Discharge (ESD)

2009-06-29
HISTORICAL
J551/15_200906
This SAE Standard specifies the ESD test methods and procedures necessary to evaluate electronic modules intended for vehicle use. It describes test procedures for evaluating electronic modules in complete vehicles. A procedure for verifying the simulator that is used to generate the electrostatic discharges is given in Appendix A. Functional status classifications for immunity to ESD are given in Appendix B.
Standard

Vehicle Electromagnetic Immunity - Electrostatic Discharge (ESD)

2015-09-17
HISTORICAL
J551/15_201509
This SAE Standard specifies the ESD test methods and procedures necessary to evaluate electronic modules intended for vehicle use. It describes test procedures for evaluating electronic modules in complete vehicles. A procedure for verifying the simulator that is used to generate the electrostatic discharges is given in Appendix A. Functional status classifications for immunity to ESD are given in Appendix B.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields

2014-04-16
HISTORICAL
J1113/26_201404
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Conducted Immunity, 250 kHz to 400 MHz, Direct Injection of Radio Frequency (RF) Power

2010-08-05
CURRENT
J1113/3_201008
This part of SAE J1113 specifies the direct RF power injection test method and procedure for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except the RF reference ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 400 MHz.
Standard

Immunity to Conducted Transients on Power Leads

2023-03-20
CURRENT
J1113/11_202303
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2011-06-07
HISTORICAL
J1113/13_201106
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2015-02-26
CURRENT
J1113/13_201502
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
X