Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Study of Non-Phosphorus and Non-Ash Engine oil

2011-08-30
2011-01-2127
Engine oils normally contain calcium detergents and ZnDTPs to have detergency and antiwear performance. However, it has been recently understood that these additives could deteriorate filter performance in catalyst and DPF. In this background this paper explains the study and the development about new type of engine oil excluding metal detergents and phosphorus compounds. The developed engine oil shows good durability in several JASO engine tests and a fleet test by formulating newly developed additives as substitute for calcium detergents and ZnDTPs.
Technical Paper

Piston Detergency and Anti-Wear Performance of Non-Phosphorus and Non-Ash Engine Oil

2019-01-15
2019-01-0021
The deposition of ash derived from engine oil on the surface of diesel particle filters (DPF) has recently been reported to degrade the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst, reducing the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus, non-ash engine oil (NPNA) that does not contain metal-based detergents or zinc dialkyldithiophosphate (ZnDTP). Various engine tests were performed, and we confirmed that under normal running conditions, the NPNA oil had a sufficiently high piston detergency and wear resistance-two important requirements for engine oil-to meet current American and Japanese standards. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

The Effect of Ashless Additives for Non-Phosphorus and Non-Ash Engine Oil on Piston Detergency

2015-09-01
2015-01-2031
Recently, deposition of ash derived from engine oil on the surface of a diesel particle filter (DPF) has been reported to worsen the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst and reduces the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus and non-ash engine oil (NPNA) that does not contain metal-based detergents and zinc dialkyldithiophosphate (ZnDTP). We performed a performance test for NPNA using an actual engine and reported that the piston detergency and anti-wear performance of NPNA were sufficiently high. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

Impact of Non-Phosphorus and Non-Ash Engine Oil on After-Treatment Devices

2014-10-13
2014-01-2782
Automobile exhaust gas contains various harmful substances other than carbon dioxide, so exhaust gas post-processing devices have been developed to reduce their environmental load. Engine oil has contributed to the improvement of automobiles' environmental performance due to its excellent fuel-saving and long-drain properties. Recently, the lifetime of an exhaust gas post-processing device has been reported to decrease due to ash and phosphorus in engine oil. We have developed non-phosphorus and non-ash engine oil (NPNA), in which metal-based detergents and zinc dialkyldithiophosphate (ZnDTP) were not contained. We have performed a verification test for NPNA using an actual engine. In a performance test for a diesel particulate filter (DPF), the amount of soot and ash deposited onto a DPF was smaller when NPNA was used than when commercially available engine oil was used.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP (Part II)

2009-11-03
2009-32-0080
As well as a four-wheeled vehicle, in the field of motorcycle, development of the CO2 reduction technology and practical use are required for global environment. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Ito1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods: JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

The performance of diesel engine oil using ashless anti-wear additive and detergent

2023-09-29
2023-32-0027
To comply with increasingly strict emission regulations, diesel vehicles are equipped with Diesel Particulate Filters (DPF) to capture fine particulate matter (PM) from exhaust gas. However, due to the limited capacity of DPF to capture soot, periodic regeneration processing is required to burn it off. The ash created by metal-based additives in engine oil accumulates in DPF, leading to issues such as increased regeneration frequency and decreased fuel efficiency. To solve this problem, researchers have developed diesel engine oil with reduced ash content. However, the authors are taking it a step further and developing a diesel engine oil without metal-based detergents and anti-wear additives, for even more significant environmental impact reduction. This paper describes the development of an ashless engine oil with DH-2 performance, the effects of the developed engine oil on DPF, and the results of engine and actual field tests.
X