Refine Your Search

Topic

Search Results

Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Journal Article

Future Engine Technology in Hand-Held Power Tools

2012-10-23
2012-32-0111
Today mankind is using highly sophisticated tools which contribute to maintain the standard of living. Nevertheless, these tools have to be further improved in the near future in order to protect health and environment as well as to ensure prosperity. Two-stroke engines equipped with a carburettor are the most used propulsion technology in hand-held power tools like chain saws and grass trimmers. The shortage of fossil resources and the necessary reduction of carbon dioxide emissions ask for improved engine efficiency. Concurrently, customers demand for an easy usage with high performance at all operating conditions, e.g. varying ambient temperature and pressure and different fuels. Moreover, world-wide emission limits will be even stricter in future. The improvement of the emission level, fuel consumption and customer benefits, while keeping the present advantages of two-stroke engines, like high specific power and simplicity, are the goals of this research work.
Technical Paper

Investigations on Low Pressure Gasoline Direct Injection for a Standard GDI Combustion System

2010-09-28
2010-32-0094
In the course of the last few years a continuous increase of the injection pressure level of gasoline direct injection systems appeared. Today's systems use an injection pressure up to 200bar and the trend shows a further increase for the future. Although several benefits go along with the increased injection pressure, the disadvantages such as higher system costs and higher energy demand lead to the question of the lowest acceptable injection pressure level for low cost GDI combustion systems. Lowering injection pressure and costs could enable the technological upgrading from MPFI to GDI in smaller engine segments, which would lead to a reduction of CO2 emission. This publication covers the investigation of a low pressure GDI system (LPDI) with focus on small and low cost GDI engines. The influence of the injection pressure on the fuel consumption and emission behavior was investigated using a 1.4l series production engine.
Technical Paper

High Efficient 125- 250 cm3 LPDI Two-Stroke Engines, a Cheap and Robust Alternative to Four-Stroke Solutions?

2010-09-28
2010-32-0019
The Institute of Internal Combustion Engines and Thermodynamics at Graz University of Technology has developed a low-pressure (5 bar) direct injection (LPDI) combustion system for 50 cm₃ two-stroke engines during the last years. The 50 cm₃ two-stroke engine is a specific European engine class. Worldwide the 125 cm₃ class is more important. In order to investigate the potential of higher displacement engines equipped with the LPDI combustion process, a demonstrator engine with 250 cm₃ has been developed. The results of this demonstrator from the engine test bench and from the chassis dynamometer are discussed to show the potential of this two-stroke technology. In order to ease the interpretation, the results of a homogenously scavenged two-stroke engine and of a naturally aspirated four-stroke engine serve as reference. The results show that the LPDI technology is a real alternative to expensive four-stroke engines.
Technical Paper

Study of Possible Range Extender Concepts with Respect to Future Emission Limits

2010-09-28
2010-32-0129
The future exhaust emission legislation limits and the procedures for running the test cycles will have an important influence on future range extender concepts. Due to the special steady state operation strategy of the range extender engines, it is possible to create a simple methodology for comparing engine test bench emissions with the emission limits of exhaust gas legislations. Therefore the energy demand of a predefined vehicle was simulated with PHEM, a longitudinal dynamic simulation tool. According to that, the influence of different exhaust gas after treatment systems and preheating options on the tolerated raw emission concentration will be analyzed. With this information, a few chosen range extender engine concepts will be compared concerning their suitability for future exhaust emission legislations. The selection of the range extender concepts was carried out with the methotology of a value benefit analysis.
Technical Paper

A Demonstration of the Emission Behaviour of 50 cm3 Mopeds in Europe Including Unregulated Components and Particulate Matter

2011-11-08
2011-32-0572
The European emission legislation for two-wheeler vehicles driven by engines of ≤ 50 cm₃ is continuously developing. One of the most important issues in the near future will be the finalization of the European Commission's proposals for future steps in the emissions regulations as well as the verification of the impacts of current standards on the market. To have a basis for the discussion about these topics, the Association for Emissions Control by Catalyst (AECC) with the Institute for Internal Combustion Engines and Thermodynamics of Graz University of Technology (IVT) carried out an extensive test program to show the actual emission situation of state-of-the-art mopeds including mass and number of particulate matter as well as unregulated gaseous components. One of the main goals of these tests was to measure exhaust emissions without any modifications to the engines of standard production vehicles available on the European market.
Technical Paper

E-Fuel applications in Non Road Mobile Machinery

2022-01-09
2022-32-0074
Professional users in particular will continue to rely on internal combustion engine drives in the future due to high power requirements and high daily energy consumption. Especially if they have to work in rural areas without the possibility of recharging batteries, such as in forestry or maintenance of road verges or railway lines. For these applications, it must be possible to run sustainable fuels for defossilization and drastically reduced CO2 emissions. This paper provides insights into a possible future fuel market and describes its evolution towards a more sustainable future from the perspective of a handheld equipment manufacturer. As developments in the fuel market are currently difficult to predict, manufacturers of hand-held power tools with combustion engines need to be prepared for changes in the composition of fuels that might become available on the market.
Technical Paper

Impact of Zero CO2 Fuels on Engine Behaviour of Two-Stroke Engines in Hand-Held Powertools

2022-01-09
2022-32-0061
One possible path to reduce the CO2 emissions of hand-held power tools are fuels with different amount of renewable content. Within this paper test bench measurements on a small two-stroke engine were carried out. We are trying to reduce CO2 emissions by using fuels which absorbed CO2 from the air during its lifetime or production, so called Zero CO2 fuels The focus was set on the investigation of combustion behaviour, performance and emissions of Zero CO2 fuels in comparison to commonly available fuels. For our measurements we chose a 46 cc serial engine, which was slightly modified for scientific research. This paper shows findings on effects of renewable fuels on engine characteristics. Additionally, the chemical properties of each fuel were investigated in order to form a comprehensive picture, together with the performed dyno measurements.
Technical Paper

Low Cost Range Extender Technology for Hybrid Electric City Scooters

2012-10-23
2012-32-0083
Electric driving is generally limited to short distances in an emission sensible urban environment. In the present situation with high cost electric storage and long charging duration hybridization is the key to enable electric driving. In comparison to the passenger car segment, where numerous manufacturers are already producing and offering different hybrid configurations for their premium class models, the two wheeler sector is not yet affected by this trend. The main reason for the retarded implementation of this new hybrid technology is its high system costs, as they cannot be covered by a reasonable product price. Especially for the two wheeler class L1e, with a maximum speed of 45 km/h and an engine displacement of less than 50 cm₃, the cost factor is highly important and decisive for its market acceptance, because the majority of vehicles are still low-cost products equipped with simple carbureted 2-stroke engines.
Technical Paper

GDI with High-Performance 2-Stroke Application: Concepts, Experiences and Potential for the Future

2004-09-27
2004-32-0043
Thanks to its unsurpassed power-to-weight ratio, its low package space and low-maintenance design, the loop-scavenged two-stroke engine with conventional mixture preparation is still being used in some sectors of vehicle engineering, such as boat drives, snow mobiles and motor scooters, as well as in hand-held applications. To maintain the potential of the 2-stroke engine for the future it is necessary to take adequate steps against the system-dependent disadvantage of the simple 2-stroke engine, namely that of higher emissions compared to 4-stroke engines. One possible solution is gasoline direct injection. Its more frequent use will increase the production numbers, making it an interesting technology even in the above-mentioned cost-sensitive applications. The current report presents various concepts of direct injection in 2-stroke engines, from air-assisted injection through to high-pressure direct injection, and compares them with traditional techniques of mixture formation.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Technical Paper

Overview of Different Gas Exchange Concepts for Two-Stroke Engines

2018-10-30
2018-32-0041
The concept of a loop scavenged two-stroke engine, controlling the intake and exhaust port by the moving piston, is a proven way to realize a simple and cheap combustion engine. But without any additional control elements for the gas exchange this concept quickly reaches its limits for current emission regulations. In order to fulfil more stringent emission and fuel consumption limits with a two-stroke engine, one of the most important measures is to avoid scavenging losses of fuel and oil. Additionally, it is necessary to follow a lambda = 1 concept for a 3-way exhaust gas after-treatment. Therefore, using internal mixture preparation systems in combination with different concepts to control the gas exchange process, the two-stroke engine could become a choice for automotive applications, especially as a Range Extender in a Plugin Hybrid Electric Vehicle (PHEV).
Technical Paper

Combustion Analysis with Residual Gas as a Design Parameter for Two-Stroke Engines

2018-10-30
2018-32-0045
In a variety of applications, two-stroke engines assert their usage as a propulsion unit, for examples in off-road vehicles, scooters, hand-held power tools and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. Furthermore, two-stroke engines convince with high durability and low maintenance demand. However, an increasing environmental awareness, the protection of health and the shortage of fossil resources are the driving factors to further enhance the internal combustion process of two-stroke engines. The reduction of emissions and fuel consumption with a constant power level is focused on. Developments deal with the optimization of the combustion process itself or the enhancement of the exhaust gas aftertreatment. Especially in very small two-stroke engines an exhaust gas aftertreatment system is rarely applied, due to disadvantages regarding component temperatures and product costs.
Technical Paper

Artificial Neural Network Based Predictive Real Drive Emission and Fuel Economy Simulation of Motorcycles

2018-10-30
2018-32-0030
As the number of different engine and vehicle concepts for powered-two wheelers is very high and will even rise with hybridization, the simulation of emissions and fuel consumption is indispensable for further development towards more environmentally friendly mobility. In this work, an adaptive artificial neural network based predictive model for emission and fuel consumption simulation of motorcycles operated in real world conditions is presented. The model is developed in Matlab and Simulink and is integrated into a longitudinal vehicle dynamic simulation whereby it is possible to simulate various and not yet measured test cycles. Subsequently, it is possible to predict real drive emissions RDE and on-road fuel consumption by a minimum of previous measurement effort.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Technical Paper

Control of a Low Cost Range Extender for L1e Class PHEV Two-Wheelers

2014-11-11
2014-32-0014
Due to the small number of two wheelers in Europe and their seasonal use, their contribution to the total emissions has been underestimated for a long time. With the implementation of the new emission regulation 168/2013 [3] for type approval coming into force 2016, the two wheeler sector is facing major changes. The need to fulfil more stringent emission limits and the high demand on the durability of after treatment systems result in an engine control system that is getting more complex and therewith more expensive. Especially the low cost two wheelers with small engine capacities will be affected by increasing costs which cannot be covered by the actual competitive product price. Therefore, new vehicle concepts have to be introduced on the market. A vehicle concept of a plug in hybrid electric city scooter with range extender as well as the range extender itself have already been published in SAE Papers 2011-32-0592 [1] and 2012-32-0083 [2].
Technical Paper

Air Cooled 50cm3 Scooter Euro 4 Application of the Two-Stroke LPDI Technology

2014-11-11
2014-32-0008
The Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology, has presented several applications of its 2-stroke LPDI (low pressure direct injection) technology in the previous years ([1], [2], [3]). In order to improve the competitiveness of the 2-stroke LPDI technology, an air cooled 50cm3 scooter application has been developed. All previous applications have been liquid cooled. This air cooled application demonstrates the EURO 4 (2017) ability of the technology and shows that the 2S-LPDI technology can also be applied to low cost air-cooled engines. Hence, the complete scooter and moped fleet can be equipped with this technology in order to fulfil both the emission standards and the COP (conformity of production) requirements of Euro 4 emission stage. The paper presents the Euro 4 Scooter results and describes the efficient conversion process of the existing carburetor engine to the LPDI version.
Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-11-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
Technical Paper

Development of a Low Emission Two-Stroke Engine with Low Pressure Fuel Injection

2006-11-13
2006-32-0065
Based on the fundamental analysis of the two-stroke process and the first results of the 3D-CFD simulation (Paper No: SETC 2005-32-0098), the development of a small capacity two-stroke engine is the subject of this publication. The developed 50 cm3 two-stroke engine is applied with a low pressure fuel injection system and allows, due to the special positioning of the fuel injector, two different scavenge modes. The first mode is a standard homogenous scavenge mode and the second one is for a stratified scavenged engine operation. Both modes can be achieved only by the adjustment of the injection timing without any restrictions concerning possible phasing. The system only deals with one fuel injector; special constraints concerning the transition between stratified and homogenous operation are not required. Any possible mixture can be applied between stratification and homogenous mode.
X