Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of a Fuel Economy and Exhaust Emissions Test Method with HILS for Heavy-Duty HEVs

2008-04-14
2008-01-1318
The objective of this study was to develop a test method for heavy-duty HEVs using a hardware-in-the-loop simulator (HILS) to enhance the type-approval-test method. To achieve our objective, HILS systems for series and parallel HEVs were actually constructed to verify calculation accuracy. Comparison of calculated and measured data (vehicle speed, motor/generator power, rechargeable energy storage system power/voltage/current/state of charge, and fuel economy) revealed them to be in good agreement. Calculation error for fuel economy was less than 2%.
Technical Paper

Development of Evaluation System for Exhaust Gas and Fuel Economy of Next-generation Hybrid Electric Vehicles

2013-10-14
2013-01-2602
Next-generation vehicles which include Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) are researched and expected to reduce CO2 emissions in the future. Generally, the main factor to support high efficiency of EV and HEV is the idle stop, motor assistance and regenerative braking. The vehicle mechanism of HEV is complex, compared with conventional internal combustion engine vehicle. Certification test method of gas emissions and fuel consumption is used driving mode, which is currently reflecting the typical driving conditions in the market. And driving mode of certification test is established focusing on the reproducibility of driving by conventional internal combustion engine vehicles. It is necessary to consider that the driving mode for the vehicle used regenerative energy is reflected correctly. And high accuracy certification test method for next generation HEVs is necessary in order to evaluate exhaust gas and fuel economy.
Journal Article

Validation of Test Procedure for Measuring the Fuel Consumption of Production-Model FCVs

2019-04-02
2019-01-0382
Factors affecting the measurement of the fuel consumption of FCVs were analyzed to reveal their sensitivity. The method for measuring fuel consumption described in WLTP is to measure the hydrogen consumption by using an electric precision balance and off-vehicle tanks (not on-vehicle tanks). This is unique compared with conventional vehicles such as petrol-engine vehicles and pure-electric vehicles. Therefore, we examined the sensitivities of the effect of hydrogen consumption determination, the effect of hydrogen supply pipe design, and the effect of hydrogen supply pipe management. The experiments were conducted with two production models of FCVs having different FC management systems. The effects were quantitatively evaluated by comparing the fuel consumption rate driving in WLTC.
X