Refine Your Search

Topic

Search Results

Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Journal Article

From the Guantanamo Bay Crash to Objective Fatigue Hazard Identification in Air Transport

2020-10-19
Abstract Sleep quality and maintenance of the optimal cognitive functioning is of crucial importance for aviation safety. Fatigue Risk Management (FRM) enables the operator to achieve the objectives set in their safety and FRM policies. As in any other risk management cycle, the FRM value can be realized by deploying suitable tools that aid robust decision-making. For the purposes of our article, we focus on fatigue hazard identification to explore the possible developments forward through the enhancement of objective tools in air transport operators. To this end we compare subjective and objective tools that could be employed by an FRM system. Specifically, we focus on an exploratory survey on 120 pilots and the analysis of 250 fatigue reports that are compared with objective fatigue assessment based on the polysomnographic (PSG) and neurocognitive assessment of three experimental cases.
Journal Article

Recent Development in Friction Stir Welding Process: A Review

2020-09-09
Abstract The Friction stir welding (FSW) is recently presented so to join different materials without the melting process as a solid-state joining technique. A widely application for the FSW process is recently developed in automotive industries. To create the welded components by using the FSW, the plunged probe and shoulder as welding tools are used. The Finite Element Method (FEM) can be used so to simulate and analyze material flow during the FSW process. As a result, thermal and mechanical stresses on the workpiece and welding tool can be analyzed and decreased. Effects of the welding process parameters such as tool rotational speed, welding speed, tool tilt angle, depth of the welding tool, and tool shoulder diameter can be analyzed and optimized so to increase the efficiency of the production process. Material characteristics of welded parts such as hardness or grain size can be analyzed so to increase the quality of part production.
Journal Article

An Investigation on Drilling of Epoxy Composites by Taguchi Method

2021-04-21
Abstract Effects of process parameters such as rotational speed, feed rate, and drill diameters on the drilling behavior of basalt-epoxy-based composites including 2.5 wt.% Al2O3 particles manufactured by mixing and compression method were investigated by Taguchi’s technique. The experimental results showed that the burr height (BH) increased considerably almost linearly with an increase in the drill diameter, while it remained stable with speed and decreased the feed rate slightly. There was an excellent correlation between the control factors and responses, BH of basalt fiber-reinforced plastics (BFRPs) through the Taguchi approach. The model had an adjusted R2 value of 96.3%. Generally, the inclusion of Al2O3 particles in BFRP increased its cutting force properties. Optimized drilling conditions for the input variables to produce the lowest response of the BH for composites were rotational speed of 560 rpm and feed rate of 0.28 mm/rev and a drill diameter of 4.5 mm.
Journal Article

Automated Guided Vehicles for Small Manufacturing Enterprises: A Review

2018-09-17
Abstract Automated guided vehicle systems (AGVS) are the prominent one in modern material handling systems used in small manufacturing enterprises (SMEs) due to their exciting features and benefits. This article pinpoints the need of AGVS in SMEs by describing the material handling selection in SMEs and enlightening recent technological developments and approaches of the AGVS. Additionally, it summarizes the analytical and simulation-based tools utilized in design problems of AGVS along with the influence of material handling management and key hurdles of AGVS. The current study provides a limelight towards making smart automated guided vehicles (AGVs) with the simplified and proper routing system and favorable materials and more importantly reducing the cost and increasing the flexibility.
Journal Article

Development of Framework for Lean Implementation: An Interpretive Structural Modeling and Interpretive Ranking Process Approach

2021-04-30
Abstract Today’s explosive condition of the market is compelling the manufacturing organizations to switch from traditional manufacturing (TM) to lean manufacturing (LM) to create a footprint in this competitive era. In this article, 16 critical success factors (CSFs) for LM implementation are identified through a vast literature review, the opinion of academicians and industry experts and interpretive structural modeling (ISM) is used to create interrelationships among the identified CSFs, and interpretive ranking process (IRP) rank these CSFs based on dominance with respect to performance dimensions. Leadership and management made the foundation of an ISM model while the training and people development have secured the first rank in the IRP model. Implementation of such ISM- and IRP-based models of CSF would give a clear understanding of these CSFs so that LM researchers, decision-makers, managers, and practitioners of LM will use their resources more efficiently.
Journal Article

Machine Learning Models for Predicting Grinding Wheel Conditions Using Acoustic Emission Features

2021-05-28
Abstract In an automated machining process, monitoring the conditions of the tool is essential for deciding to replace or repair the tool without any manual intervention. Intelligent models built with sensor information and machine learning techniques are predicting the condition of the tool with good accuracy. In this study, statistical models are developed to identify the conditions of the abrasive grinding wheel using the Acoustic Emission (AE) signature acquired during the surface grinding operation. Abrasive grinding wheel conditions are identified using the abrasive wheel wear plot established by conducting experiments. The piezoelectric sensor is used to capture the AE from the grinding process, and statistical features of the abrasive wheel conditions are extracted in time and wavelet domains of the signature. Machine learning algorithms, namely, Classification and Regression Trees (CART) and Support Vector Classifiers (SVC), are used to build statistical models.
Journal Article

Optimal Electric Vehicle Design Tool Using Genetic Algorithms

2018-04-18
Abstract The proposed approach present the development of a computer tool that allows, in the first phase, the modeling of the electric vehicle power chain. This phase is based on a library developed under the Matlab-Simulink simulation environment. This library contains all the components of the power chain; it offers the selection of the desired configuration of each component. In the second phase, the tool solves the autonomy optimization problem. This problem is resolved by a program based on genetic algorithms. This program permits to optimize the configuration parameters maximizing the vehicle autonomy of the chosen chain. This tool is based on a graphical interface developed under the Matlab simulation environment.
Journal Article

Cyberattacks and Countermeasures for Intelligent and Connected Vehicles

2019-10-14
Abstract ICVs are expected to make the transportation safer, cleaner, and more comfortable in the near future. However, the trend of connectivity has greatly increased the attack surfaces of vehicles, which makes in-vehicle networks more vulnerable to cyberattacks which then causes serious security and safety issues. In this article, we therefore systematically analyzed cyberattacks and corresponding countermeasures for in-vehicle networks of intelligent and connected vehicles (ICVs). Firstly, we analyzed the security risk of ICVs and proposed an in-vehicle network model from a hierarchical point of view. Then, we discussed possible cyberattacks at each layer of proposed network model.
Journal Article

Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures

2019-10-14
Abstract The rapid development of connected and automated vehicle technologies together with cloud-based mobility services is transforming the transportation industry. As a result, huge amounts of consumer data are being collected and utilized to provide personalized mobility services. Using big data poses serious challenges to data privacy. To that end, the risks of privacy leakage are amplified by data aggregations from multiple sources and exchanging data with third-party service providers, in face of the recent advances in data analytics. This article provides a review of the connected vehicle landscape from case studies, system characteristics, and dataflows. It also identifies potential challenges and countermeasures.
Journal Article

Predicting the Severity of Driving Scenario for Rear-End and Cut-In Collisions Using Potential Risk Indicator Extracted from Near-Miss Video Database

2021-07-28
Abstract The driving safety performance of autonomous driving vehicles must be ensured before on-road implementation. Because it is not realistic to evaluate every single test condition in real-world traffic, computer simulation methods can be used. The driving safety performance can be evaluated by simulating various driving scenarios and calculating surrogate indicators representing dangerous collision risk. This study used a near-miss database and introduced a surrogate indicator that represents a potential risk in the driving scenarios for rear-end and cut-in collisions. The near-miss video database includes several driving scenarios experienced by human drivers, such as dangerous situations that lead to accidents, potentially dangerous situations that have a risk probability to escalate into dangerous situations, and normal driving situations. A skilled and attentive human driver foresees dangerous situations while driving and avoids them.
Journal Article

A Bibliographical Review of Electrical Vehicles (xEVs) Standards

2018-04-18
Abstract This work puts presents an all-inclusive state of the art bibliographical review of all categories of electrified transportation (xEVs) standards, issued by the most important standardization organizations. Firstly, the current status for the standards by major organizations is presented followed by the graphical representation of the number of standards issued. The review then takes into consideration the interpretation of the xEVs standards developed by all the major standardization organizations across the globe. The standards are differentiated categorically to deliver a coherent view of the current status followed by the explanation of the core of these standards. The ISO, IEC, SAE, IEEE, UL, ESO, NTCAS, JARI, JIS and ARAI electrified transportation vehicles xEV Standards from USA, Europe, Japan, China and India were evaluated. A total approximated of 283 standards in the area have been issued.
Journal Article

Processing of Aluminium/Boron Carbide Composites and Functionally Graded Materials: A Literature Review

2021-11-03
Abstract Aluminum boron carbide (Al-B4C) composites have been a popular choice among scientists and designers for high-performance strength-to-weight ratio engineering applications. Requirements for such applications are met due to enhanced microstructure, mechanical properties, and ease of processing conditions. The performance and application of these composites are mostly dependent on certain parameters, like composition ratios of reinforcing particles, their sizes and wettability, the presence of additional phases, etc. Prominently, efforts are also being made to synthesize Al-B4C as functionally graded materials (FGMs) that have the potential to cater to the needs of advanced engineering applications and can facilitate new dimensions in the field of aluminum matrix composites (AMCs).
Journal Article

Design and Analysis of Aircraft Lift Bag

2021-02-12
Abstract Aircraft lift bag is the equipment used for the recovery of an aircraft and is considered as a lifting equipment. Boeing 737 is a domestic aircraft considered for designing this bag. The aircraft lift bag is made of composite material, and the most widely used materials are nylon and neoprene. A composite material is used to make the bag lightweight and easy to handle. For calculation of properties and the engineering constant of the respective composite materials, micromechanics approach is used, in which the method of Representative Volume Element (RVE) is taken into consideration. The loading and boundary conditions are the exact replica of the working conditions. The operation of this bag is completely pneumatic. The stresses induced in the bag are analyzed in finite element software and are compared with the calculated theoretical values. CATIA is used to model the bag, and ABAQUS is used for the finite element calculations.
Journal Article

Automated Driving Systems and Their Insertion in the Brazilian Scenario: A Test Track Proposal

2018-06-05
Abstract The conception of Automated Driving Systems is expanding fast with the expectation of the whole society and with heavy investments toward research and development. However, the insertion of these vehicles in real scenarios worldwide is still a challenge for governments, once they require an important evolution of the legal and regulatory framework. Although there are several initiatives to accelerate the insertion process, each country has specificities when considering the traffic scenario. In order to contribute to this emerging problem, this article presents a perspective of how the insertion of these vehicles can be performed considering specificities of the Brazilian scenario, one of the world's biggest car markets. Thus, it is discussed the global scenario of autonomous vehicles, the Brazilian traffic system, and the certification and homologation process, focusing on a new test track proposal.
Journal Article

Filled Rubber Isolator’s Constitutive Model and Application to Vehicle Multi-Body System Simulation: A Literature Review

2018-06-05
Abstract Rubber elements present highly nonlinear mechanical properties affected by frequency and amplitude of excitation, prestrain and temperature, etc. Finite element (FE) models and lumped parameter models can be distinguished in the development of constitutive models of rubbers. Based on the concept of overlay model, different kinds of viscoelastic, or frequency-dependent models, and elastoplastic/friction, or amplitude-dependent models, are compared in terms of their modelling approach, parameters identification process and applications. Prestrain-dependent models and temperature-dependent thermo-mechanical models are also reviewed, including some special models which are not based on the concept of the overlay model. Experimental and computational studies of cylindrical bushings subjected to coupled deformation modes are analyzed and discussed.
Journal Article

Development of a Database for Model Parameterization, Tire Performance Evaluation, and Analysis of In-Plane Spindle Forces

2021-04-07
Abstract Tires are one of the most important vehicle components since they significantly affect vehicle attributes such as handling stability, steering controllability, ride comfort, and structure durability. However, whether for tire competitive benchmarking or vehicle conceptual design, data insufficiency tends to restrict the development process. This article presents a procedure of establishing a database for the evaluation of tire and vehicle impact vibration. Forty-three tires with various sizes and usages were selected to build the datasets. The rigid ring model was used to characterize each individual tire sample on account of our application requests. In view of the test resources, an optimization approach to the standard parameterization method was proposed and fully validated with the measurement database. The parameter characteristics were then statistically investigated and compared between the different tire types.
Journal Article

Active Suspension: Future Lessons from The Past

2018-06-18
Abstract Active suspension was a topic of great research interest near the end of last century. Ultimately broad bandwidth active systems were found to be too expensive in terms of both energy and financial cost. This past work, developing the ultimate vehicle suspension, has relevance for today’s vehicle designers working on more efficient and effective suspension systems for practical vehicles. From a control theorist’s perspective, it provides an interesting case study in the use of “practical” knowledge to allow “better” performance than predicted by theoretically optimal linear controllers. A brief history of active suspension will be introduced. Peter Wright, David Williams, and others at Lotus developed their Lotus modal control concept. In a parallel effort, Dean Karnopp presented the notion of inertial (Skyhook) damping. These concepts will be compared, the combination of these two distinctly different efforts will be discussed, and eventual vehicle results presented.
X