Refine Your Search

Topic

Search Results

Journal Article

Characteristics Analyses of Innovative Crank-Lever Electromagnetic Damper for Suspension System of an Off-Road Vehicle

2021-06-02
Abstract In this article performance of the innovative Crank-Lever Electromagnetic Damper (CLEMD) for an off-road vehicle suspension system is analyzed. To determine the characteristic behavior of the CLEMD, the damping force it provides on the suspension system is varied by changing the values of the damping coefficient in the simulations. Various parameters considered in the analyses include power regenerated, voltage, current, comfort, road-holding, etc. The behavior of all the parameters of the CLEMD is observed for an off-road vehicle by carrying out simulations on country roads since the off-road vehicles are subjected to higher road irregularities and hence provide an opportunity to regenerate a higher amount of power. A two-dimensional (2-D) model of a vehicle developed in SimMechanics is interfaced with a Simulink model of CLEMDs for the analyses.
Journal Article

A Heavy Tractor Semi-Trailer Stability Control Strategy Based on Electronic Pneumatic Braking System HIL Test

2019-10-15
Abstract Aiming to improve the handling performance of heavy tractor semi-trailer during turning or changing lanes at high speed, a hierarchical structure controller is proposed and a hardware-in-the-loop (HIL) test bench of the electronic pneumatic braking system is developed to validate the proposed controller. In the upper controller, a Kalman filter observer based on the heavy tractor semi-trailer dynamic model is used to estimate the yaw rates and sideslip angles of the tractor and trailer. Simultaneously, a sliding mode direct yaw moment controller is developed, which takes the estimated yaw rates and sideslip angles and the reference values calculated by the three-degrees-of-freedom dynamic model of the heavy tractor semi-trailer as the control inputs. In the lower controller, the additional yaw moments of tractor and trailer are transformed into corresponding wheel braking forces according to the current steering characteristics.
Journal Article

Development, Testing, and Assessment of a Kinematic Path-Following Model for Towing Vehicle Systems

2019-01-07
Abstract A kinematic path-following model is developed based on an existing modeling framework established by the authors [1, 2] for prediction of the paths of towing vehicle systems. The presented path-following model determines the path of the towing vehicle using the vehicle’s speed and acceleration data collected by an inertial measurement unit (IMU). An Ackerman steering model was presented to calculate instantaneous directional angles and radii for each towed vehicle based on its geometric data and steering angle. In that model the off-tracking effect is properly captured. A 1:4 scale model for a towing vehicle system was built to test the developed steering model, and it was found that the angles and radii of the towing vehicle and each towed unit calculated using the Ackerman steering model agreed very well with those measured from the scale model.
Journal Article

From the Guantanamo Bay Crash to Objective Fatigue Hazard Identification in Air Transport

2020-10-19
Abstract Sleep quality and maintenance of the optimal cognitive functioning is of crucial importance for aviation safety. Fatigue Risk Management (FRM) enables the operator to achieve the objectives set in their safety and FRM policies. As in any other risk management cycle, the FRM value can be realized by deploying suitable tools that aid robust decision-making. For the purposes of our article, we focus on fatigue hazard identification to explore the possible developments forward through the enhancement of objective tools in air transport operators. To this end we compare subjective and objective tools that could be employed by an FRM system. Specifically, we focus on an exploratory survey on 120 pilots and the analysis of 250 fatigue reports that are compared with objective fatigue assessment based on the polysomnographic (PSG) and neurocognitive assessment of three experimental cases.
Journal Article

Adaptive Transmission Shift Strategy Based on Online Characterization of Driver Aggressiveness

2018-06-04
Abstract Commercial vehicles contribute to the majority of freight transportation in the United States. They are also significant fuel consumers, with over 23% of fuel used in transportation in the United States. The gas price volatility and increasingly stringent regulation on greenhouse-gas emissions have driven manufacturers to adopt new fuel-efficient technologies. Among others, an advanced transmission control strategy, which can provide tangible improvement with low incremental cost. In the commercial sector, individual drivers have little or no interest in vehicle fuel economy, contrary to fleet owners. Aggressive driving behavior can greatly increase the real-world vehicle fuel consumption. However, the effectiveness of transmission calibration to match the shift strategy to the driving characteristics is still a challenge.
Journal Article

Development of a Learning Capability in Virtual Operator Models

2019-03-14
Abstract This research developed methods for a virtual operator model (VOM) to learn the optimal control inputs for operation of a virtual excavator. Virtual design, used to model, simulate, and test new features, has often been limited by the fidelity of the virtual model of human operators. Human operator learns, over time, the capability, limits, and control characteristics of new vehicles to develop the best strategy to maximize the efficiency of operation. However, VOMs are developed with fixed strategies and for specific vehicle models (VMs) and require time-consuming re-tuning of the VOM for each new vehicle design. Thus, there typically is no capability to optimize strategies, taking account of variation in vehicle capabilities and limitations. A VOM learning capability was developed to optimize control inputs for the swing-to-pile task of a trenching operation. Different control strategies consisted of varied combinations of speed control, position control, and coast.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

An Investigation on Drilling of Epoxy Composites by Taguchi Method

2021-04-21
Abstract Effects of process parameters such as rotational speed, feed rate, and drill diameters on the drilling behavior of basalt-epoxy-based composites including 2.5 wt.% Al2O3 particles manufactured by mixing and compression method were investigated by Taguchi’s technique. The experimental results showed that the burr height (BH) increased considerably almost linearly with an increase in the drill diameter, while it remained stable with speed and decreased the feed rate slightly. There was an excellent correlation between the control factors and responses, BH of basalt fiber-reinforced plastics (BFRPs) through the Taguchi approach. The model had an adjusted R2 value of 96.3%. Generally, the inclusion of Al2O3 particles in BFRP increased its cutting force properties. Optimized drilling conditions for the input variables to produce the lowest response of the BH for composites were rotational speed of 560 rpm and feed rate of 0.28 mm/rev and a drill diameter of 4.5 mm.
Journal Article

Stability Analysis of Combined Braking System of Tractor-Semitrailer Based on Phase-Plane Method

2018-06-04
Abstract An analysis method for the stability of combined braking system of tractor-semitrailer based on phase-plane is investigated. Based on a 9 degree of freedom model, considering longitudinal load transfer, nonlinear model of tire and other factors, the braking stability of tractor-semitrailer is analyzed graphically on the phase plane. The stability of both tractor and semitrailer with different retarder gear is validated with the energy plane, β plane, yaw angle plane and hinged angle plane. The result indicates that in the long downhill with curve condition, both tractor and semitrailer show good stability when retarder is working at 1st and 2nd gear, and when it is at 3rd gear, the tractor is close to be unstable while semitrailer is unstable already. Besides, tractor and semitrailer both lose stability when retarder is working at the 4th gear.
Journal Article

Two-Way Coupled CFD Approach for Predicting Gear Temperature of Oil Jet Lubricated Transmissions

2018-07-24
Abstract This article focuses on the development of a two-way coupled methodology to predict gear temperature of oil jet lubricated transmissions using commercial software for computational fluid dynamics simulation. The proposed methodology applies an overset mesh technique to model the gear interlocking motion, multiphase of air-oil mixture, and heat transfer. Two gear pairs were used to develop and validate the methodology, an overdrive helical gear pair of a commercial vehicle transmission and a standard spur gear pair. Different oil jet lubrication methods were investigated using the proposed methodology, such as oil jet directed at the into-mesh position and at the out-of-mesh position. This investigation showed that out of mesh lubrication direction shows better cooling performance which is in well agreement with previous studies of literature.
Journal Article

Aging Effects of Catalytic Converters in Diesel Exhaust Gas Systems and Their Influence on Real Driving NOx Emissions for Urban Buses

2018-06-18
Abstract The selective catalytic reduction (SCR) of nitrogen oxides seems to be the most promising technique to meet prospective emission regulations of diesel-driven commercial vehicles. In the case of developing cost-effective catalytic converters with comparably high activity, selectivity, and resistance against aging, ion-exchanged zeolites play a major role. This study presents, firstly, a brief literature review and subsequently a discussion of an extensive conversion analysis of exemplary Cu/ and Fe/zeolites, as well as a homogeneous admixture of both. The aging stages of SCR catalysts deserve particular attention in this study. In addition, the aging condition of the diesel oxidation catalyst (DOC) was analyzed, which influences the nitrogen dioxide (NO2) formation, because the NO2/nitrogen oxides (NOx) ratio upstream from the SCR converter could be identified as a key factor for low temperature NOx conversion.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

2019-01-07
Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

Automated Guided Vehicles for Small Manufacturing Enterprises: A Review

2018-09-17
Abstract Automated guided vehicle systems (AGVS) are the prominent one in modern material handling systems used in small manufacturing enterprises (SMEs) due to their exciting features and benefits. This article pinpoints the need of AGVS in SMEs by describing the material handling selection in SMEs and enlightening recent technological developments and approaches of the AGVS. Additionally, it summarizes the analytical and simulation-based tools utilized in design problems of AGVS along with the influence of material handling management and key hurdles of AGVS. The current study provides a limelight towards making smart automated guided vehicles (AGVs) with the simplified and proper routing system and favorable materials and more importantly reducing the cost and increasing the flexibility.
Journal Article

Machine Learning Models for Predicting Grinding Wheel Conditions Using Acoustic Emission Features

2021-05-28
Abstract In an automated machining process, monitoring the conditions of the tool is essential for deciding to replace or repair the tool without any manual intervention. Intelligent models built with sensor information and machine learning techniques are predicting the condition of the tool with good accuracy. In this study, statistical models are developed to identify the conditions of the abrasive grinding wheel using the Acoustic Emission (AE) signature acquired during the surface grinding operation. Abrasive grinding wheel conditions are identified using the abrasive wheel wear plot established by conducting experiments. The piezoelectric sensor is used to capture the AE from the grinding process, and statistical features of the abrasive wheel conditions are extracted in time and wavelet domains of the signature. Machine learning algorithms, namely, Classification and Regression Trees (CART) and Support Vector Classifiers (SVC), are used to build statistical models.
Journal Article

Optimal Electric Vehicle Design Tool Using Genetic Algorithms

2018-04-18
Abstract The proposed approach present the development of a computer tool that allows, in the first phase, the modeling of the electric vehicle power chain. This phase is based on a library developed under the Matlab-Simulink simulation environment. This library contains all the components of the power chain; it offers the selection of the desired configuration of each component. In the second phase, the tool solves the autonomy optimization problem. This problem is resolved by a program based on genetic algorithms. This program permits to optimize the configuration parameters maximizing the vehicle autonomy of the chosen chain. This tool is based on a graphical interface developed under the Matlab simulation environment.
Journal Article

A Wind-Tunnel Investigation of the Influence of Separation Distance, Lateral Stagger, and Trailer Configuration on the Drag-Reduction Potential of a Two-Truck Platoon

2018-06-13
Abstract A wind-tunnel study was undertaken to investigate the drag reduction potential of two-truck platooning, in the context of understanding some of the factors that may influence the potential fuel savings and greenhouse-gas reductions. Testing was undertaken in the National Research Council Canada 2 m × 3 m Wind Tunnel with two 1/15-scale models of modern aerodynamic tractors paired with dry-van trailers configured with and without combinations of side-skirts and boat-tails. Separation distances of 0.14, 0.28, 0.49, 0.70 and 1.04 vehicle lengths were tested (3 m, 6 m, 10.5 m, 15 m, and 22.5 m full scale). Additionally, within-lane lateral offsets up to 0.31 vehicle widths (0.8 m full scale) were evaluated, along with a full-lane offset of 1.42 vehicle widths (3.7 m full scale). This study has made use of a wind-averaged-drag coefficient as the primary metric for evaluating the effect of vehicle platooning.
Journal Article

TOC

2020-06-25
Abstract TOC
Journal Article

TOC

2020-08-26
Abstract TOC
Journal Article

Modeling and Analysis of a Heavy Vehicle with Self-Steering Axle

2020-04-21
Abstract Commercial vehicles often incorporate self-steering axles to meet the axle load requirements while providing improved maneuverability, reduced off-tracking, and reduced tire and pavement wear. Market forces promote the design of more efficient self-steering axle products with reduced weight and more features. Manufacturers also work to differentiate their products through unique designs and new concepts. Traditional design methods for self-steering axles include empirical and trial-and-error methods to set the steering mechanism design parameters based on known design baselines and prior experience. For innovative new concepts that are too far from the traditional designs, it is desirable to have alternative ways for evaluating the expected performance. This article introduces a reduced-order model that allows the rapid analysis of the steering dynamic behavior of self-steering axles.
X