Refine Your Search

Topic

Search Results

Journal Article

Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization

2018-06-04
Abstract Exhaust manifolds are one of the most important components on the engine assembly, which is mounted on engine cylinder head. Exhaust manifolds connect exhaust ports of cylinders to the turbine for turbocharged diesel engine therefore they play a significant role in the performance of engine system. Exhaust manifolds are subjected to very harsh thermal loads; extreme heating under very high temperatures and cooling under low temperatures. Therefore designing a durable exhaust manifold is a challenging task. Computer aided engineering (CAE) is an effective tool to drive an exhaust manifold design at the early stage of engine development. Thus advanced CAE methodologies are required for the accurate prediction of temperature distribution. However, at the end of the development process, for the design verification purposes, various tests have to be carried out in engine dynamometer cells under severe operating conditions.
Journal Article

Sliding Mode Control of Hydraulic Excavator for Automated Grading Operation

2018-06-07
Abstract Although ground grading is one of the most common tasks that hydraulic excavators perform in typical work sites, proper grading is not easy for less-skilled operators as it requires coordinated manipulation of multiple hydraulic cylinders. In order to help alleviate this difficulty, automated grading systems are considered as an effective alternative to manual operations of hydraulic excavators. In this article, a sliding mode controller design is presented for automated grading control of a hydraulic excavator. First, an excavator manipulator model is developed in Simulink by using SimMechanics and SimHydraulics toolboxes. Then, a sliding mode controller is designed to control the manipulator to trace a predefined trajectory for a grading task. For a comparison study, a PI controller is used to control the manipulator to perform a grading task following the same desired trajectory and the performance is compared with those obtained by the sliding mode controller.
Journal Article

An Investigation on Drilling of Epoxy Composites by Taguchi Method

2021-04-21
Abstract Effects of process parameters such as rotational speed, feed rate, and drill diameters on the drilling behavior of basalt-epoxy-based composites including 2.5 wt.% Al2O3 particles manufactured by mixing and compression method were investigated by Taguchi’s technique. The experimental results showed that the burr height (BH) increased considerably almost linearly with an increase in the drill diameter, while it remained stable with speed and decreased the feed rate slightly. There was an excellent correlation between the control factors and responses, BH of basalt fiber-reinforced plastics (BFRPs) through the Taguchi approach. The model had an adjusted R2 value of 96.3%. Generally, the inclusion of Al2O3 particles in BFRP increased its cutting force properties. Optimized drilling conditions for the input variables to produce the lowest response of the BH for composites were rotational speed of 560 rpm and feed rate of 0.28 mm/rev and a drill diameter of 4.5 mm.
Journal Article

Optimization Approach of Turning Process of Multiwalled Carbon Nanotubes-Aluminium Oxide/Epoxy Hybrid Nanocomposites

2021-06-15
Abstract The high quality of the machined parts in a short time is a research challenge for enhancing these parts’ operating performance. Optimizing the machining operations and adequately selecting the cutting parameters can solve this challenge. Thus, this work proposes an optimization approach of the machining process parameters of epoxy hybrid nanocomposites reinforced by multiwall carbon nanotubes (MWCNTs) and aluminum oxide (Al2O3). Cutting speed (V), feed rate (F), insert nose radius, and depth of cut (D) were the machining parameters. The roundness error and surface roughness (Ra) were selected as process response control parameters. The optimization techniques such as response surface method (RSM) and grey relation analysis (GRA) with the variance of analysis (ANOVA) were involved. Forty experimental runs were performed. The RSM optimization and ANOVA results showed that the insert nose radius and F are the most significant factors that affect the Ra.
Journal Article

Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models

2018-05-07
Abstract Finite Element Analysis (FEA) of metal cutting is largely the domain of research organizations. Despite significant advances towards accurately modelling metal machining processes, industrial adoption of these advances has been limited. Academic studies, which mainly focused on orthogonal cutting, fail to address this discrepancy. This paper bridges the gap between simplistic orthogonal cutting models and the complex components typical in the manufacturing sector. This paper outlines how to utilize results from orthogonal cutting simulations to predict industrially relevant performance measures efficiently. In this approach, using 2D FEA cutting models a range of feed, speed and rake angles are simulated. Cutting force coefficients are then fit to the predicted cutting forces. Using these coefficients, forces for 3D cutting geometries are calculated.
Journal Article

Machine Learning Models for Predicting Grinding Wheel Conditions Using Acoustic Emission Features

2021-05-28
Abstract In an automated machining process, monitoring the conditions of the tool is essential for deciding to replace or repair the tool without any manual intervention. Intelligent models built with sensor information and machine learning techniques are predicting the condition of the tool with good accuracy. In this study, statistical models are developed to identify the conditions of the abrasive grinding wheel using the Acoustic Emission (AE) signature acquired during the surface grinding operation. Abrasive grinding wheel conditions are identified using the abrasive wheel wear plot established by conducting experiments. The piezoelectric sensor is used to capture the AE from the grinding process, and statistical features of the abrasive wheel conditions are extracted in time and wavelet domains of the signature. Machine learning algorithms, namely, Classification and Regression Trees (CART) and Support Vector Classifiers (SVC), are used to build statistical models.
Journal Article

Investigation of a Model-Based Approach to Estimating Soot Loading Amount in Catalyzed Diesel Particulate Filters

2019-08-26
Abstract In order to meet the worldwide increasingly stringent particulate matter (PM) and particulate number (PN) emission limits, the diesel particulate filter (DPF) is widely used today and has been considered to be an indispensable feature of modern diesel engines. To estimate the soot loading amount in the DPF accurately and in real-time is a key function of realizing systematic and efficient applications of diesel engines, as starting the thermal regeneration of DPF too early or too late will lead to either fuel economy penalty or system reliability issues. In this work, an open-loop and on-line approach to estimating the DPF soot loading on the basis of soot mass balance is developed and experimentally investigated, through establishing and combining prediction models of the NOx and soot emissions out of the engine and a model of the catalytic soot oxidation characteristics of passive regeneration in the DPF.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

Engine Cylinder Head Thermal-Mechanical Fatigue Evaluation Technology and Platform Application

2019-10-14
Abstract An in-cylinder combustion analysis and a computational fluid dynamics (CFD) coolant flow analysis were performed using AVL FIRE software, which provided the heat transfer boundary conditions (HTBCs) to the temperature field calculation of the cylinder head. Based on the measured material performance parameters such as stress-strain curve under different temperatures and E-N curve, creep, and oxidation data material performance, the cylinder head-gasket-cylinder block finite element analysis (FEA) was performed. According to the temperature field calculation results, the maximum temperature of the cylinder head is 200°C that is within the limit of ALU material. The temperature of the water is more than 21.1°C below the critical burnout point temperature. The high-cycle fatigue (HCF) and thermal-mechanical fatigue (TMF) analysis of the cylinder head were performed by FEMFAT software.
Journal Article

An Investigation of the Effects of the Piston Bowl Geometries of a Heavy-Duty Engine on Performance and Emissions Using Direct Dual Fuel Stratification Strategy, and Proposing Two New Piston Profiles

2020-03-16
Abstract Direct dual fuel stratification (DDFS) strategy benefits the advantages of the RCCI and PPC strategies simultaneously. DDFS has improved control over the heat release rate, by injecting a considerable amount of fuel near TDC, compared to RCCI. In addition, the third injection (near TDC) is diffusion-limited. Consequently, piston bowl geometry directly affects the formation of emissions. The modified piston geometry was developed and optimized for RCCI by previous scholars. Since all DDFS experimental tests were performed with the modified piston profile, the other piston profiles need to be investigated for this strategy. In this article, first, a comparative study between the three conventional piston profiles, including the modified, stock, and scaled pistons, was performed. Afterward, the gasoline injector position was shifted to the head cylinder center for the stock piston. NOX emissions were improved; however, soot was increased slightly.
Journal Article

Thermomechanical Fracture Failure Analysis of a Heavy-Duty Diesel Engine Cylinder Liner through Performance Analysis and Finite Element Modeling

2020-10-02
Abstract Diesel engines include systems for cooling, lubrication, and fuel injection and contain a variety of components. A malfunction in any of the engine systems or the presence of any faulty element influences engine performance and deteriorates its components. This research is concerned with the untimely appearance of vital cracks in the liners of a turbocharged heavy-duty Diesel engine. To find the root causes for premature failure, rigorous examinations through visual observations, material characterization, and metallographic investigations are performed. These include Scanning Electron Microscope (SEM) and Energy-Dispersive Spectroscopy (EDS), fracture mechanics analysis, and performance examination, which are also followed by Finite Element Moldings. To find the proper remedy to resolve the problem, drawing a precise and reliable picture of the engine’s operating conditions is required.
Journal Article

Cavitation Erosion Prediction at Vibrating Walls by Coupling Computational Fluid Dynamics and Multi-body-Dynamic Solutions

2021-08-24
Abstract Cavitation erosion caused by high-frequency vibrating walls can appear in the cooling circuit of internal combustion engines along the liners. The vibrations caused by the mechanical forces acting on the crank drive can lead to temporary regions of low pressure in the coolant with local vapor formation, and vapor collapse close to the liner walls leads to erosion damage, which can strongly reduce the lifetime of the entire engine. The experimental investigation of this phenomenon is so time consuming and expensive, which it is usually not feasible during the design phase. Therefore, numerical tools for erosion damage prediction should be preferred. This study presents a numerical workflow for the prediction of cavitation erosion damages by coupling a three-dimensional (3D) Multi-Body-Dynamic (MBD) simulation tool with a 3D Computational Fluid Dynamics (CFD) solver.
Journal Article

Effect of Ball Milling on the Tensile Properties of Aluminum-Based Metal Matrix Nanocomposite Developed by Stir Casting Technique

2021-06-16
Abstract Combining ball milling with stir casting in the synthesis of nanocomposites is found effective in increasing the strength and ductility of the nanocomposites. In the first step, the nanoparticles used as reinforcement are generated by milling a mixture of aluminum (Al) and manganese dioxide (MnO2) powders. A mixture of Al and MnO2 powders are mixed in the ratio of 1:2.4 by weight and milled at 300 rpm in a high-energy planetary ball mill for different durations of 120 min, 240 min, and 360 min to generate nano-sized alumina (Al2O3) particles. It is supposed that the powders have two different roles during milling, firstly, to generate nano-sized Al2O3 by oxidation at the high-energy impact points due to collision between Al and MnO2 particles, and secondly, to keep nano-sized Al2O3 particles physically separate by the presence of coarser particles.
Journal Article

Cylinder Deactivation Strategies to Stabilize High Stratification Gasoline Compression Ignition Down to Idle

2021-03-22
Abstract Gasoline compression ignition (GCI) is a family of combustion strategies that can be used to achieve low emissions and fuel consumption in medium- and heavy-duty applications while taking advantage of projected cost advantages of gasoline over diesel fuel in the future. In particular, high fuel stratification GCI (HFS-GCI) has been shown to have CDC-like thermal efficiency and combustion control by utilizing near-TDC injection timings to achieve a principally mixing-controlled combustion event. The stability of HFS-GCI combustion at low loads has been shown to be the principal challenge to its implementation in production applications and in this study, a novel class of cylinder deactivation strategies to achieve stable HFS-GCI combustion down to no-load (0 kW brake power) is proposed and studied. 1D simulations were carried out in GT-POWER and coupled experiments were carried out in a single-cylinder medium-duty test cell with an on-road 87AKI gasoline fuel.
Journal Article

Parametric Optimization of Electro Discharge Process during Machining of Aluminum/Boron Carbide/Graphite Composite

2021-09-27
Abstract The efficiency of the traditional machining process becomes limited because of the mechanical properties and complexity of the geometric shape of the processed materials. This difficulty is resolved through the nonconventional machining process. Electric Discharge Machining (EDM) process is one of the popular nonconventional machining processes among all nonconventional machining processes for processing such materials. The main objective of the present research work is to evaluate the effect of percentage weight fraction of reinforcement and process parameters on machining responses during EDM of aluminum (Al) 7075-reinforced boron carbide (B4C) and graphite metal matrix composite (MMC) and optimization of the result.
Journal Article

Effect of Laser Beam Machining Process on Stainless Steel Performance Characteristic

2022-03-02
Abstract The impact of Laser Beam Machining (LBM) process parameters on Surface Roughness (SR) and kerf width during machining is investigated in this work. Stainless Steel is a material that is resistant to corrosion. LBM is a nontraditional machining method in which material is removed by melting and vaporizing metal when a laser beam collides with the metal surface. There are numerous process variables that influence the quality of the LBM-cut machined surface. However, the most essential factors are laser power, cutting speed, assist gas pressure, nozzle distance, focus length, pulse frequency, and pulse width. SR, Material Removal Rate (MRR), and kerf width and heat affected zone are significant performance indicators in LBM. The influence of LBM process parameters on SR and kerf width while machining stainless steel material is investigated in this study.
Journal Article

Experimental Measurement of Material Stability of 2024 T351 Aluminum Alloy for Weight Measurement Applications

2021-07-28
Abstract This work presents an experimental analysis of the bulk content characterization of 2024 T351 Aluminum alloy under cyclic loadings used for precision applications such as balancing, optical, and laser instruments. Test samples with various machining directions (longitudinal and orthogonal) are formed using a CNC milling machine. Inelastic and plastic deformations in the nanoscale are the investigated characteristics of interest; hence, the fabric’s time constant at a fixed quarter-hour span. Samples with specific geometry are subjected to a tensile stress range of 10-150 N/mm2 provided by an electromagnetic test device. It should be said that all types of deformations considered were measured with and without loading using interferometers and capacitive sensors. Experiments are performed under constant temperature-stable housing whereas experimental measurements are recorded within the residual strain range of 10 microns.
Journal Article

Influence of Miller Cycles on Engine Air Flow

2018-04-18
Abstract The influence of the intake valve lift of two Miller cycles on the in-cylinder flow field inside a DISI engine is studied experimentally since changes of the engine flow field directly affect the turbulent mixing and the combustion process. For the analysis of the impact of the valve timing on the general flow field topology and on the large-scale flow structures, high-speed stereo-scopic particle-image velocimetry measurements are conducted in the tumble plane and the cross-tumble plane. The direct comparison to a standard Otto intake valve lift curve reveals evidently different impacts on the flow field for both Miller cam shafts. A Miller cycle that features late intake valve closing shows a flow field comparable to the standard Otto valve timing and a tumble vortex of strong intensity can be identified.
Journal Article

WM-LES-Simulation of a Generic Intake Port Geometry

2018-06-18
Abstract Fluid mechanical design of the cylinder charge motion is an important part of an engine development. In the present contribution an intake port geometry is proposed that can be used as a test case for intake port flow simulations. The objective is to fill the gap between generic test cases, such as the backward facing step or the sudden expansion, and simulations of proprietary intake ports, which are barely accessible in the community. For the intake geometry measurement data was generated on a flow-through test bench and a wall-modeled LES-simulation using a hybrid RANS/LES approach for near-wall regions was conducted. The objective is to generate and analyze a reference flow case. Since mesh convergence studies are too costly for scale resolving approaches only one simulation was done, but on a very fine and mostly block-structured numerical mesh to achieve minimal numerical dissipation.
Journal Article

In-Use Efficiency of Oxidation and Three-Way Catalysts Used in High-Horsepower Dual Fuel and Dedicated Natural Gas Engines

2018-07-01
Abstract Directional drilling rigs and hydraulic stimulation equipment typically use diesel fueled compression ignition (CI) engines. The majority of these engines are compliant with US Environmental Protection Agency (EPA) Tier 2 standards. To reduce fuel costs, industry is investing in dual fuel (DF) and dedicated natural gas (DNG) engines. DF engines use diesel oxidation catalysts (DOCs) to reduce CO and NMHC emissions. DNG engines may be either lean-burn or rich-burn and the latter uses three-way catalysts (TWC) to reduce CO, NMHC, and NOx emissions. This research presents in-use catalyst efficiency data collected pre- and post-catalyst for three DF engines and two DNG engines. One DF engine was converted earlier and did not include a DOC. Data were collected from six Tier 2 engines, two CI drilling engines converted to operate as DF, two CI hydraulic fracturing engines converted to operate as DF, and two SI DNG drilling engines.
X