Refine Your Search

Topic

Search Results

Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Journal Article

Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints

2019-12-13
Abstract Joining titanium (Ti) alloys with conventional processes is difficult due to their complex structural properties and ability of phase transformation. Concerning all the difficulties, diffusion bonding is considered as an appropriate process for joining Ti alloys. Ti6Al4V, which is an α+β alloy widely used for aero engine component manufacturing, is diffusion bonded in this investigation. The diffusion bonding process parameters such as bonding temperature, bonding pressure, and holding time were optimized to achieve desired bonding characteristics such as shear strength, bonding strength, bonding ratio, and thickness ratio using response surface methodology (RSM). Empirical relationships were developed for the prediction of the bond characteristics, and sensitivity analysis was performed to determine the increment and decrement tendency of the shear strength with respect to the bonding parameters.
Journal Article

Recent Development in Friction Stir Welding Process: A Review

2020-09-09
Abstract The Friction stir welding (FSW) is recently presented so to join different materials without the melting process as a solid-state joining technique. A widely application for the FSW process is recently developed in automotive industries. To create the welded components by using the FSW, the plunged probe and shoulder as welding tools are used. The Finite Element Method (FEM) can be used so to simulate and analyze material flow during the FSW process. As a result, thermal and mechanical stresses on the workpiece and welding tool can be analyzed and decreased. Effects of the welding process parameters such as tool rotational speed, welding speed, tool tilt angle, depth of the welding tool, and tool shoulder diameter can be analyzed and optimized so to increase the efficiency of the production process. Material characteristics of welded parts such as hardness or grain size can be analyzed so to increase the quality of part production.
Journal Article

Metallurgical Approach for Improving Life and Brinell Resistance in Wheel Hub Units

2017-09-17
Abstract Raceway Brinell damage is one major cause of wheel bearing (hub unit) noise during driving. Original Equipment Manufacturer (OEM) customers have asked continuously for its improvement to the wheel bearing supply base. Generally, raceway Brinelling in a wheel hub unit is a consequence of metallic yielding from high external loading in a severe environment usually involving a side impact to the wheel and tire. Thus, increasing the yielding strength of steel can lead to higher resistance to Brinell damage. Both the outer ring and hub based on Generation 3 (Gen. 3) wheel unit are typically manufactured using by AISI 1055 bearing quality steel (BQS); these components undergo controlled cooling to establish the core properties then case hardening via induction hardening (IH). This paper presents a modified grade of steel and its IH design that targets longer life and improves Brinell resistance developed by ILJIN AMRC (Advanced Materials Research Center).
Journal Article

Response of Austempering Heat Treatment on Microstructure and Mechanical Property in Different Zones of As-Welded Ductile Iron (DI)

2018-05-08
Abstract Sound ductile iron (DI) welded joints were performed using developed coated electrode and optimized welding parameters including post weld heat treatment (PWHT).Weldments consisting of weld metal, partially melted zone (PMZ), heat affected zone (HAZ) and base metal were austenitized at 900 °C for 2 hour and austempered at 300 °C and 350 °C for three different holding time (1.5 hour, 2 hour and 2.5 hour). In as-weld condition, microstructures of weld metal and PMZ show ledeburitic carbide and alloyed pearlite, but differ with their amount. Whereas microstructure of HAZ shows pearlite with some ledeburitic carbide and base metal shows only ferrite.
Journal Article

The Effect of Equal-Channel Angular Pressing Processing on Microstructural Evolution, Hardness Homogeneity, and Mechanical Properties of Pure Aluminum

2020-07-25
Abstract Equal-channel angular pressing (ECAP) is among the most applicable severe plastic deformation processes used to fabricate ultrafine-grained materials with superior mechanical properties. In this work, a commercial purity aluminum has been processed via ECAP process up to four passes. The influence of ECAP routes (A and Bc) on the mechanical properties of the material and its grain size was investigated. Microstructural observations of the as-annealed and the rods processed via ECAP were undertaken using optical microscopy. Hardness profiles and contour maps of sections cut perpendicularly and parallel to the load direction were assessed to investigate the effect of ECAP processing on the hardness distribution across the deformed rods. Compressive properties of the rods were also examined. In addition, digital images correlation was used to display the stress distribution along the longitudinal section of the processed sample during the compression test.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Automated Guided Vehicles for Small Manufacturing Enterprises: A Review

2018-09-17
Abstract Automated guided vehicle systems (AGVS) are the prominent one in modern material handling systems used in small manufacturing enterprises (SMEs) due to their exciting features and benefits. This article pinpoints the need of AGVS in SMEs by describing the material handling selection in SMEs and enlightening recent technological developments and approaches of the AGVS. Additionally, it summarizes the analytical and simulation-based tools utilized in design problems of AGVS along with the influence of material handling management and key hurdles of AGVS. The current study provides a limelight towards making smart automated guided vehicles (AGVs) with the simplified and proper routing system and favorable materials and more importantly reducing the cost and increasing the flexibility.
Journal Article

Development of Framework for Lean Implementation: An Interpretive Structural Modeling and Interpretive Ranking Process Approach

2021-04-30
Abstract Today’s explosive condition of the market is compelling the manufacturing organizations to switch from traditional manufacturing (TM) to lean manufacturing (LM) to create a footprint in this competitive era. In this article, 16 critical success factors (CSFs) for LM implementation are identified through a vast literature review, the opinion of academicians and industry experts and interpretive structural modeling (ISM) is used to create interrelationships among the identified CSFs, and interpretive ranking process (IRP) rank these CSFs based on dominance with respect to performance dimensions. Leadership and management made the foundation of an ISM model while the training and people development have secured the first rank in the IRP model. Implementation of such ISM- and IRP-based models of CSF would give a clear understanding of these CSFs so that LM researchers, decision-makers, managers, and practitioners of LM will use their resources more efficiently.
Journal Article

Repairing Volume Defects of Al-Cu Alloy Joints by Active-Passive Filling Friction Stir Repairing

2020-11-12
Abstract In this study, active-passive filling friction stir repairing (A-PFFSR) process was employed to repair the volume defects in friction stir welding (FSW) joints of Al-Cu alloy. The volume defects with varied geometries were first machined into taper holes, which are similar to keyhole defect by a rotational tool with a threaded pin. Then, the keyhole defect was effectively filled with the materials around the keyhole and an additional filler using a number of nonconsumable pinless tools with the shoulders having six spiral flutes. The macro/microstructures, microhardness, and tensile properties of the repaired joints were investigated. The influences of plunge speed on macro/microstructures and mechanical properties of the repaired joints have been analyzed too. It was noticed that decreasing plunge speed was effective to improve the frictional heat and material flow, which increased joint surface integrity avoiding interfacial drawbacks.
Journal Article

Cyberattacks and Countermeasures for Intelligent and Connected Vehicles

2019-10-14
Abstract ICVs are expected to make the transportation safer, cleaner, and more comfortable in the near future. However, the trend of connectivity has greatly increased the attack surfaces of vehicles, which makes in-vehicle networks more vulnerable to cyberattacks which then causes serious security and safety issues. In this article, we therefore systematically analyzed cyberattacks and corresponding countermeasures for in-vehicle networks of intelligent and connected vehicles (ICVs). Firstly, we analyzed the security risk of ICVs and proposed an in-vehicle network model from a hierarchical point of view. Then, we discussed possible cyberattacks at each layer of proposed network model.
Journal Article

Cavitation Erosion Prediction at Vibrating Walls by Coupling Computational Fluid Dynamics and Multi-body-Dynamic Solutions

2021-08-24
Abstract Cavitation erosion caused by high-frequency vibrating walls can appear in the cooling circuit of internal combustion engines along the liners. The vibrations caused by the mechanical forces acting on the crank drive can lead to temporary regions of low pressure in the coolant with local vapor formation, and vapor collapse close to the liner walls leads to erosion damage, which can strongly reduce the lifetime of the entire engine. The experimental investigation of this phenomenon is so time consuming and expensive, which it is usually not feasible during the design phase. Therefore, numerical tools for erosion damage prediction should be preferred. This study presents a numerical workflow for the prediction of cavitation erosion damages by coupling a three-dimensional (3D) Multi-Body-Dynamic (MBD) simulation tool with a 3D Computational Fluid Dynamics (CFD) solver.
Journal Article

Optimization and Reliability Analysis Aiming to Minimize Surface Roughness of Selective Inhibition Sintered Parts

2020-10-12
Abstract Selective inhibition sintering (SIS) results in easy, flexible, fast, and cost-efficient fabrication of functional parts by using powder material for various applications. The functional part is important for operational examination by fabricating the part unswervingly from computer-aided design (CAD) data. However, poor surface quality is the major disadvantage in the SIS procedure. The selection procedure of optimal operating parameters plays a major role in the fabrication of end products. The present study discusses the effect of key contributing operating parameters on the surface quality of the polyamide parts fabricated by the SIS process. Parameters like heater power (HP), layer thickness (LT), heater feed rate (HFR), machine feed rate (MFR), and bed temperature (BT) were considered in this study.
Journal Article

Effect of Ball Milling on the Tensile Properties of Aluminum-Based Metal Matrix Nanocomposite Developed by Stir Casting Technique

2021-06-16
Abstract Combining ball milling with stir casting in the synthesis of nanocomposites is found effective in increasing the strength and ductility of the nanocomposites. In the first step, the nanoparticles used as reinforcement are generated by milling a mixture of aluminum (Al) and manganese dioxide (MnO2) powders. A mixture of Al and MnO2 powders are mixed in the ratio of 1:2.4 by weight and milled at 300 rpm in a high-energy planetary ball mill for different durations of 120 min, 240 min, and 360 min to generate nano-sized alumina (Al2O3) particles. It is supposed that the powders have two different roles during milling, firstly, to generate nano-sized Al2O3 by oxidation at the high-energy impact points due to collision between Al and MnO2 particles, and secondly, to keep nano-sized Al2O3 particles physically separate by the presence of coarser particles.
Journal Article

Damping of Powder Metal Rings

2020-05-21
Abstract Powder metallurgy is a widely used manufacturing methodology in the gearbox industry. Noise and vibration is a common cause for concern in the gearbox industry due to the continuous contact between gear teeth at high rotational frequencies. Despite this, limited research has been performed investigating the modal properties of powder metal products. This work investigates the damping ratios of a copper-infiltrated steel powder metal ring and a hot-rolled steel ring both experimentally and computationally. Negligible difference was observed between the damping ratios of the powder metal and hot-rolled steel rings. Two proportional damping models were investigated to predict the damping ratios of the powder metal ring. It was found that the Caughey damping model was the most accurate, generating damping ratios within 2.36% for a frequency bandwidth of up to 4000 Hz.
Journal Article

A Bibliographical Review of Electrical Vehicles (xEVs) Standards

2018-04-18
Abstract This work puts presents an all-inclusive state of the art bibliographical review of all categories of electrified transportation (xEVs) standards, issued by the most important standardization organizations. Firstly, the current status for the standards by major organizations is presented followed by the graphical representation of the number of standards issued. The review then takes into consideration the interpretation of the xEVs standards developed by all the major standardization organizations across the globe. The standards are differentiated categorically to deliver a coherent view of the current status followed by the explanation of the core of these standards. The ISO, IEC, SAE, IEEE, UL, ESO, NTCAS, JARI, JIS and ARAI electrified transportation vehicles xEV Standards from USA, Europe, Japan, China and India were evaluated. A total approximated of 283 standards in the area have been issued.
Journal Article

Processing of Aluminium/Boron Carbide Composites and Functionally Graded Materials: A Literature Review

2021-11-03
Abstract Aluminum boron carbide (Al-B4C) composites have been a popular choice among scientists and designers for high-performance strength-to-weight ratio engineering applications. Requirements for such applications are met due to enhanced microstructure, mechanical properties, and ease of processing conditions. The performance and application of these composites are mostly dependent on certain parameters, like composition ratios of reinforcing particles, their sizes and wettability, the presence of additional phases, etc. Prominently, efforts are also being made to synthesize Al-B4C as functionally graded materials (FGMs) that have the potential to cater to the needs of advanced engineering applications and can facilitate new dimensions in the field of aluminum matrix composites (AMCs).
Journal Article

Automated Driving Systems and Their Insertion in the Brazilian Scenario: A Test Track Proposal

2018-06-05
Abstract The conception of Automated Driving Systems is expanding fast with the expectation of the whole society and with heavy investments toward research and development. However, the insertion of these vehicles in real scenarios worldwide is still a challenge for governments, once they require an important evolution of the legal and regulatory framework. Although there are several initiatives to accelerate the insertion process, each country has specificities when considering the traffic scenario. In order to contribute to this emerging problem, this article presents a perspective of how the insertion of these vehicles can be performed considering specificities of the Brazilian scenario, one of the world's biggest car markets. Thus, it is discussed the global scenario of autonomous vehicles, the Brazilian traffic system, and the certification and homologation process, focusing on a new test track proposal.
Journal Article

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

2019-02-01
Abstract In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness.
X