Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 3 Airflow Velocity Distribution with Foot Mode

2010-04-12
2010-01-1065
Following the previous reports, ventilation characteristics in automobile was investigated by using a half-scale car model which was created by the Society of Automotive Engineers of Japan (JSAE). In the present study, the ventilation mode of the cabin was foot mode which was the ventilation method for using in winter season. Supplied air was blown from the supply openings under the dashboard to the rear of the model via the driver's foot region in this mode. The experiment was performed in order to obtain accurate data about the airflow properties equipped with particle image velocimetry (PIV). Our experimental data is to be shared as a standard model to assess the environment within automobiles. The data is also for use in computational fluid dynamics (CFD) benchmark tests in the development of automobile air conditioning, which enables high accuracy prediction of the interior environment of automobiles.
Technical Paper

Prediction of Air Cooling System for EV/HEV Battery Pack*

2011-05-17
2011-39-7269
An efficient cooling system will ensure the reliability of the EV/HEV (Electric Vehicle/Hybrid Electric Vehicle) battery system and extend their lifetime. In order to shorten design period or increase design iterations, a high-speed and high-precision prediction method for cooling is indispensable. For models, such as Mitsubishi i-MiEV, which use fresh air to cool batteries in the battery pack, a transient approach based on loosely coupled method is developed to predict temperature change of batteries. The results by our new approach are in good agreement with the experimental data. Moreover, for the EV/HEV using circulated air to cool its batteries, a second approach is also developed, which can predict the temperature variations of both EV/HEV batteries in the battery pack and the cooling air.
X