Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Electric Power Train Configurations with Appropriate Transmission Systems

2011-04-12
2011-01-0942
Referring to the transmission development, three different classifications of the power train are useful. These are the conventional power train with combustion-engined drive of the wheels, the electric power train with electromotive drive of the wheels and the hybrid power train with both types of drive. Due to this division, the micro hybrid belongs to the conventional power train while the serial hybrid is classified with the electric power train. Subdivisions of the electric power train are the decentralized drives near the axle shafts or the wheel hub drive and the central drive with differential. The choice of the electric motor is dependent on different influences such as the package, the costs or the application area. Furthermore the execution of the transmission system does influence the electric motor. Wheel hub drives are usually executed on wheel speed level or with single ratio transmission.
Technical Paper

The Potential of a Hybrid Powertrain in Fuel Consumption and Thermal Drive-Off Element Load for Drive-Off Procedures Regarding Driving Styles

2023-04-11
2023-01-0900
Hybrid powertrains derive fuel consumption benefits from using an electric motor. These benefits are more significant in city traffic than on the highway and depend on the vehicle and the driving style. Further detailed research on the fuel consumption of hybrid powertrains during drive-off procedures is rarely found in the literature. Therefore, this study focuses on analyzing the potential of a mild-hybrid powertrain, in which the electric motor is integrated with the transmission (P2.5 concept). The fuel consumption and thermal load in the drive-off element, a wet frictional clutch, are analyzed for a city cycle with a focus on the first drive-off procedure for different driving styles. Particular attention is paid to the influence of different driving styles on the torque demands of the electric motor. These simulations are realized with a so-called backward-forward model. The backward-facing part enables following a given driving cycle without considering a driver model.
Technical Paper

Modelling of Power Losses of Transmission Synchronizers in Neutral Position

2018-04-03
2018-01-1228
Developing an energy-efficient powertrain system is a solution for environment-friendly vehicles. Furthermore, it also enhances the performance of vehicles. In powertrain system, transmission plays an important role in terms of vehicle dynamic performance and energy consumption. Therefore, a lot of researches have been conducted on modelling power losses inside the transmission. Basically, the power losses in transmission consist of bearing losses, drag torque losses on gear blank that is immersed in the oil and gear mesh losses due to the sliding frictional force on gear flank. According to some experiments in the latest literatures, power losses of synchronizers cannot be neglected, when its shift sleeve is in neutral position. Principally, power losses of synchronizers in neutral position mainly come from load independent drag torque.
Journal Article

Theoretical and Experimental Investigation on Power Loss of Vehicle Transmission Synchronizers with Spray Lubrication

2019-01-15
2019-01-0028
Besides optimal engine systems, high-efficiency vehicle transmissions are generally also required to improve fuel economy in automotive applications. For the energy loss analysis in transmissions, most research focused on the major mechanical components, such as gears, bearings and seals, while the other mechanical losses, like synchronizer losses, were usually not considered. With increasing number of synchronizers in modern transmissions, a recent study indicates that the power loss analysis of synchronizers should also be developed and appended for a more accurate investigation on overall power losses in transmissions. The function of synchronizer is to equalize the different rotational speeds of shafts and gear wheels by frictional torques, for which the synchronizer must be cooled and lubricated in order to enhance the service life. With the supplement of lubricants, fluid friction is generated due to the differential speed, when the synchronizer is in neutral position.
X