Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Using LES for Predicting High Performance Car Airbox Flow

2009-04-20
2009-01-1151
Aerodynamic had played a primary role in high performance car since the late 1960s, when introduction of the first inverted wings appeared in some formulas. Race car aerodynamic optimisation is one of the most important reason behind the car performance. Moreover, for high performance car using naturally aspired engine, car aerodynamic has a strong influence also on engine performance by its influence on the engine airbox. To improve engine performance, a detailed fluid dynamic analysis of the car/airbox interaction is highly recommended. To design an airbox geometry, a wide range of aspects must be considered because its geometry influences both car chassis design and whole car aerodynamic efficiency. To study the unsteady fluid dynamic phenomena inside an airbox, numerical approach could be considered as the best way to reach a complete integration between chassis, car aerodynamic design, and airbox design.
Journal Article

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

2009-04-20
2009-01-1423
A realistic modeling of the wall heat transfer is essential for an accurate analysis and simulation of the working cycle of internal combustion engines. Empirical heat transfer formulations still dominate the application in engine process simulations because of their simplicity. However, experiments have shown that existing correlations do not provide satisfactory results for all the possible operation modes of hydrogen internal combustion engines. This paper describes the application of a flow field-based heat transfer model according to Schubert et al. [1]. The models strength is a more realistic description of the required characteristic velocity; considering the influence of the injection on the global turbulence and on the in-cylinder flow field results in a better prediction of the wall heat transfer during the compression stroke and for operations with multiple injections. Further an empirical hypothesis on the turbulence generation during combustion is presented.
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model

2009-04-20
2009-01-0931
In this work, a quasi-dimensional, multi-zone combustion model is analytically presented, for the prediction of performance and nitric oxide (NO) emissions of a homogeneous charge spark ignition (SI) engine, fueled with biogas-H2 blends of variable composition. The combustion model is incorporated into a closed cycle simulation code, which is also fully described. Combustion is modeled on the basis of turbulent entrainment theory and flame stretch concepts. In this context, the entrainment speed, by which unburned gas enters the flame region, is simulated by the turbulent burning velocity of a flamelet model. A flame stretch submodel is also included, in order to assess the flame response on the combined effects of curvature, turbulent strain and nonunity Lewis number mixture. As far as the burned gas is concerned, this is treated using a multi-zone thermodynamic formulation, to account for the spatial distribution of temperature and NO concentration inside the burned volume.
Journal Article

Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels

2009-06-15
2009-01-1971
A numerical investigation on a series of Diesel spray experiments in constant-volume vessels is proposed. Non reacting conditions were used to assess the spray models and to determine the grid size required to correctly predict the fuel-air mixture formation process. To this end, not only computed liquid and vapor penetrations were compared with experimental data, but also a detailed comparison between computed and experimental mixture fraction distributions was performed at different distances from the injector. Grid dependency was reduced by introducing an Adaptive Local Mesh Refinement technique (ALMR) with an arbitrary level of refinement. Once the capabilities of the current implemented spray models have been assessed, reacting conditions at different ambient densities and temperatures were considered. A Perfectly Stirred Reactor (PSR) combustion model, based on a direct integration of complex chemistry mechanisms over a homogenous cell, was adopted.
Journal Article

The Acoustic Impedance of a Wide Side Branch Orifice: Experimental Determination Using Three-Port Methodology

2009-05-19
2009-01-2043
The acoustic impedance of a circular, confined, side branch orifice subjected to grazing flow is studied. Two geometries are tested. In both geometries, the side branch dimension is of the same order as that of the main duct. The system is viewed as an acoustic three-port, whose passive properties are described by a system matrix. The impedance is studied with the acoustic field incident at different ports, which is shown to influence the results significantly. When excited from the leading edge or from the side branch, an interaction of the hydrodynamic and acoustic fields is triggered, while excitation from the trailing edge does not trigger such an interaction. For both the resistance and the reactance (here expressed as an end correction) the results vary in the three possible excitation cases. In the quasi-stationary limit the resistance is given by a loss coefficient times the Mach number, and the end correction collapses to a single value.
Journal Article

Metering Characteristics of a Closed Center Load - Sensing Proportional Control Valve

2009-10-06
2009-01-2850
The investigation of the flow through the metering section of hydraulic components plays a fundamental role in the design and optimization processes. In this paper the flow through a closed center directional control valve for load -sensing application is studied by means of a multidimensional CFD approach. In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. A cavitation model based on a barotropic equation of state and homogeneous equilibrium assumption, including gas absorption and dissolution in the liquid medium, is adopted and coupled to a two equation turbulence approach. Both direct and inverse flows through the metering section of the control valve are investigated, and the differences in terms of fluid - dynamics behavior are addressed In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated and compared.
Journal Article

Technology Breakthrough Achieves Objectives for SAE Preload Targets in Heavy Duty Wheel Ends

2009-10-06
2009-01-2887
Patents granted recently to Mr. Rode have changed the industry capability to adjust and verify wheel-end bearings on trucks. Until now it was believed1 that there was nothing available to confirm or verify the most desirable settings of preload on these bearings. The new, breakthrough invention is a tool and spindle-locking nut that permit quick and accurate wheel bearing adjustment by utilizing direct reading force measurement. Bearings can be set to either SAE recommended preloads or specific endplay settings. The author has been working on bearing adjustment methods for industrial applications for over forty years, and considers these inventions to be his most important breakthrough for solving this elusive bearing adjustment problem. Consistent wheel bearing preload adjustment was not possible before, even though it was widely known to achieve the best wheel performance as noted in SAE specification J2535 and re-affirmed in 2006 by the SAE Truck and Bus Wheel Subcommittee.
Journal Article

Understanding Practical Limits to Heavy Truck Drag Reduction

2009-10-06
2009-01-2890
A heavy truck wind tunnel test program is currently underway at the Langley Full Scale Tunnel (LFST). Seven passive drag reducing device configurations have been evaluated on a heavy truck model with the objective of understanding the practical limits to drag reduction achievable on a modern tractor trailer through add-on devices. The configurations tested include side skirts of varying length, a full gap seal, and tapered rear panels. All configurations were evaluated over a nominal 15 degree yaw sweep to establish wind averaged drag coefficients over a broad speed range using SAE J1252. The tests were conducted by first quantifying the benefit of each individual treatment and finally looking at the combined benefit of an ideal fully treated vehicle. Results show a maximum achievable gain in wind averaged drag coefficient (65 mph) of about 31 percent for the modern conventional-cab tractor-trailer.
Journal Article

Simulation of Cooling Airflow and Surface Temperature of a Midsize Truck

2009-10-06
2009-01-2894
This paper presents a simulation of the cooling airflow and surface temperatures of a midsize truck. The simulation uses full detailed geometry of the truck. Performance of the under-hood cooling airflow is analyzed and potential design changes leading to better cooling airflow are highlighted. Surface temperature over certain under-hood part is studied. Possible optimizations using various material and configurations are proposed. It is shown that the presented simulation approach provides valuable information to evaluate cooling system and thermal protection performance. Fast design iterations can be achieved using this approach.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Low-Cost Pathway to Ultra Efficient City Car: Series Hydraulic Hybrid System with Optimized Supervisory Control

2009-09-13
2009-24-0065
A series hydraulic hybrid concept (SHHV) has been explored as a potential pathway to an ultra-efficient city vehicle. Intended markets would be congested metropolitan areas, particularly in developing countries. The target fuel economy was ~100 mpg or 2.4 l/100km in city driving. Such an ambitious target requires multiple measures, i.e. low mass, favorable aerodynamics and ultra-efficient powertrain. The series hydraulic hybrid powertrain has been designed and analyzed for the selected light and aerodynamic platform with the expectation that (i) series configuration will maximize opportunities for regeneration and optimization of engine operation, (ii) inherent high power density of hydraulic propulsion and storage components will yield small, low-cost components, and (iii) high efficiency and high power limits for accumulator charging/discharging will enable very effective regeneration.
Journal Article

Investigation of the Flow Unsteadiness of Car Air-Box by Using LES

2009-09-13
2009-24-0128
Today, high performance race car efficiency is based on a very fine equilibrium between aerodynamic efficiency, engine performance, and chassis behaviour. In particular, from the engine point of view, one way to increase the performance is to increase its volumetric efficiency. The aim of this paper is to present the application of the Large Eddy Simulation (LES) approach for the fluid dynamic analysis of a high performance race car airbox geometry. For a naturally aspired engine, the fluid dynamic optimisation of the airbox geometry means to optimise the energy conversion (from dynamic to static pressure) inside the airbox itself, therefore to increase the flow energy on the engine trumpet sections. The LES approach seems to be the best candidate to investigate such a flow since flow unsteadiness are expected to affect airbox efficiency in terms of pressure recovery. The airbox simulations were performed by using the commercial CFD code Fluent v6.3.
Journal Article

On the Establishment of the Analysis and Verification Methods Regarding the Air Ventilation with Very Low Velocity in JEM (KIBO) as the First Manned Space Development in Japan

2009-07-12
2009-01-2552
Japanese Experiment Module (JEM) called KIBO is the first manned space structure in Japan. Among several high technologies of JEM development, achievement of the air ventilation (AV) under the micro gravity was challenging because the requirements were very difficult to meet. The verification test in the module level under the operation of the flight hardware had a serious problem by the natural convection owing to the heat generation by the flight hardware. The analysis had problems how to verify its own validity because the turbulent flow around diffuser exits in addition to the laminar flowfield where the velocity is extremely small. This paper describes the solution of these problems in the analytical and testing verification points of view. As a result, we found our analysis applied to the AV performance could provide the complicated flowfield in low velocity with the effects of turbulent flow as well as natural convection.
Journal Article

Analysis of DPF Incombustible Materials from Volvo Trucks Using DPF-SCR-Urea With API CJ-4 and API CI-4 PLUS Oils

2009-06-15
2009-01-1781
This paper reports on a field test with 23 Volvo D12C non-exhaust gas recirculation diesel engines using the Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and urea system with Ultra-Low-Sulfur-Diesel (ULSD). This combination will be used to meet the on-highway emission standards for U.S. 2010, Japan 2010, and Europe 2013. Because of future widespread use of DPF-SCR, this study reports on our field experience with this system, and focuses on enhancing our understanding of the incombustible materials which are collected in the DPF with API CJ-4 and API CI-4 PLUS oils. The average weight of incombustibles was lower in the trucks using API CJ-4 oils at 1.0% sulfated ash, than in those using API CI-4 PLUS oils at 1.4% sulfated ash. The difference in weight between the two groups was highly significant. Further, the weight of the incombustibles per kilometer substantially decreased with each subsequent cleaning within a truck.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Controlling Lubricant-Derived Phosphorous Deactivation of the Three-Way Catalysts Part 2: Positive Environmental Impact of Novel ZDP Technology

2010-10-25
2010-01-2257
Prior technical work by various OEMs and lubricant formulators has identified lubricant-derived phosphorus as a key element capable of significantly reducing the efficiency of modern emissions control systems of gasoline-powered vehicles ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ). However, measuring the exact magnitude of the detriment is not simple or straightforward exercise due to the many other sources of variation which occur as a vehicle is driven and the catalyst is aged ( 1 ). This paper, the second one in the series of publications, examines quantitative sets of results generated using various vehicle and exhaust catalyst testing methodologies designed to follow the path of lubricant-derived phosphorous transfer from oil sump to exhaust catalytic systems ( 1 ).
Journal Article

An Experimental Study on the Impact of Biodiesel Origin and Type on the Exhaust Emissions from a Euro 4 Pick-up Truck

2010-10-25
2010-01-2273
This study investigates the impact of mid-high biodiesel blends on the criteria and PAH emissions from a modern pick-up diesel vehicle. The vehicle was a Euro 4 (category N1, subclass III) compliant common-rail light-duty goods pick-up truck fitted with a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer equipped with CVS, following the European regulations. All measurements were conducted over the certification New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based biodiesel, a palm-based biodiesel, and an oxidized biodiesel obtained from used frying oils were blended with a typical automotive ultra-low-sulfur diesel at proportions of 30, 50 and 80% by volume. The experimental results revealed that CO₂ emissions and fuel consumption exhibited an increase with biodiesel over all driving conditions.
Journal Article

Scuffing Resistance of Surface Treated 8625 Alloy Steels

2011-04-12
2011-01-0034
Scuffing is a common source of failure for many mechanical components in automobiles. 8625 alloy steel is commonly used in camshafts, gears, piston pins, shafts, and splines. The purpose of the research is to study the scuffing resistance of non-treated, carburized, nitrocarburized, and carbonitrided 8625 alloy steels. The scuffing resistance of the 8625 alloy steels was determined through pin-on-disk tests. The hardness and microstructure of the disks were analyzed using electron microscopy to determine wear mechanisms for each surface treated steel. The wear mechanisms were then related to the scuff resistance of the various materials.
Journal Article

Wear Protection of Al383/SiO2 Metal Matrix Composites by Plasma Electrolytic Oxidation (PEO) Process

2010-04-12
2010-01-0024
Al383/SiO₂ metal matrix composites (MMC) were designed to increase the wear properties of the Al alloy. However, the soft Al matrix was subject to large plastic deformation under high normal load during lubricated sliding wear tests, causing detachment of the reinforced particles. To further increase the wear resistance of the MMC, in this research, Plasma Electrolytic Oxidation (PEO) process was used to form oxide coatings on the MMC. The hard and wear-resistant oxide coatings protected the metal matrix during the wear tests, reducing the wear rate of MMC. The effect of both oxide coating thickness and volume content of SiO₂ particles on the wear behavior of MMC was investigated. It was found that with a proper combination of the volume content of SiO₂ and coating thickness, the MMC exhibited high wear resistance and low friction coefficient.
X