Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Journal Article

Design and Testing of ABS for Electric Vehicles with Individually Controlled On-Board Motor Drives

2014-08-01
2014-01-9128
The paper introduces the results of the development of anti-lock brake system (ABS) for full electric vehicle with individually controlled near-wheel motors. The braking functions in the target vehicle are realized with electro-hydraulic decoupled friction brake system and electric motors operating in a braking mode. The proposed ABS controller is based on the direct slip and velocity control and includes several main blocks for computing of predictive (feedforward) and reactive (feedback) brake torque, wheel slip observer, slip target adaptation, and the algorithm of brake blending between friction brakes and electric motors. The functionality of developed ABS has been investigated on the HIL test rig for straight-line braking manoeuvres on different surfaces with variation of initial velocity. The obtained experimental results have been compared with the operation of baseline algorithm of a hydraulic ABS and have demonstrated a marked effect in braking performance.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Journal Article

Influence of the Tire Inflation Pressure Variation on Braking Efficiency and Driving Comfort of Full Electric Vehicle with Continuous Anti-Lock Braking System

2015-04-14
2015-01-0643
The presented study demonstrates results of experimental investigations of the anti-lock braking system (ABS) performance under variation of tire inflation pressure. This research is motivated by the fact that the changes in tire inflation pressure during the vehicle operation can distinctly affect peak value of friction coefficient, stiffness and other tire characteristics, which are influencing on the ABS performance. In particular, alteration of tire parameters can cause distortion of the ABS functions resulting in increase of the braking distance. The study is based on experimental tests performed for continuous ABS control algorithm, which was implemented to the full electric vehicle with four individual on-board electric motors. All straight-line braking tests are performed on the low-friction surface where wheels are more tended to lock.
Journal Article

Active Brake Judder Compensation Using an Electro-Hydraulic Brake System

2015-04-14
2015-01-0619
Geometric imperfections on brake rotor surface are well-known for causing periodic variations in brake torque during braking. This leads to brake judder, where vibrations are felt in the brake pedal, vehicle floor and/or steering wheel. Existing solutions to address judder often involve multiple phases of component design, extensive testing and improvement of manufacturing procedures, leading to the increase in development cost. To address this issue, active brake torque variation (BTV) compensation has been proposed for an electromechanical brake (EMB). The proposed compensator takes advantage of the EMB's powerful actuator, reasonably rigid transmission unit and high bandwidth tracking performance in achieving judder reduction.
Journal Article

Estimation of Brake Friction Coefficient for Blending Function of Base Braking Control

2017-09-17
2017-01-2520
The brake architecture of hybrid and full electric vehicle includes the distinctive function of brake blending. Known approaches draw upon the maximum energy recuperation strategy and neglect the operation mode of friction brakes. Within this framework, an efficient control of the blending functions is demanded to compensate external disturbances induced by unpredictable variations of the pad disc friction coefficient. In addition, the control demand distribution between the conventional frictional brake system and the electric motors can incur failures that compromise the frictional braking performance and safety. However, deviation of friction coefficient value given in controller from actual one can induce undesirable deterioration of brake control functions.
Technical Paper

Evaluation of Heavy Truck Ride Comfort and Stability

2010-04-12
2010-01-1140
This paper presents a six degree of freedom full vehicle model simulating the testing of heavy truck suspensions to evaluate the ride comfort and stability using actual characteristics of gas charged single tube shock absorbers. The model is developed using one of the commercial multi-body dynamics software packages, ADAMS. The model incorporates all sources of compliance: stiffness and damping with linear and non-linear characteristics. The front and the rear springs and dampers representing the suspension system were attached between the axles and the vehicle body. The front and the rear axles were attached to a wheel spindle assembly, which in turn was attached to the irregular drum wheel, simulating the road profile irregularities. As a result of the drum rotation, sudden vertical movements were induced in the vehicle suspension, due to the bumps and rebounds, thus simulating the road profile.
Technical Paper

A Semi-Empirical Tire Model for Transient Maneuver of On Road Vehicle

2009-10-06
2009-01-2919
To study vehicle dynamics, we need to know the forces and moments acting on the vehicle. The most important forces and moments acting on the vehicle are generated at the tire contact patch. A semi-empirical tire model was developed at Advanced Vehicle Dynamics Lab (AVDL) to use for vehicle simulations for steady-state conditions. In this paper, we extended that model to account for transient conditions. We present the basic concept, the development of the tire model, and selective simulation results. The transient tire model is developed by including the effects of the vertical load variations due to the velocity and the acceleration to the tire characteristic parameters. The simulation was performed for the semi-empirical transient tire model in two scenarios. The vehicle driving and braking maneuver was simulated to present the transient longitudinal tire behavior. The vehicle lane changing maneuver also was performed to present the transient lateral tire behavior.
Technical Paper

Estimation of Vehicle Tire-Road Contact Forces: A Comparison between Artificial Neural Network and Observed Theory Approaches

2018-04-03
2018-01-0562
One of the principal goals of modern vehicle control systems is to ensure passenger safety during dangerous maneuvers. Their effectiveness relies on providing appropriate parameter inputs. Tire-road contact forces are among the most important because they provide helpful information that could be used to mitigate vehicle instabilities. Unfortunately, measuring these forces requires expensive instrumentation and is not suitable for commercial vehicles. Thus, accurately estimating them is a crucial task. In this work, two estimation approaches are compared, an observer method and a neural network learning technique. Both predict the lateral and longitudinal tire-road contact forces. The observer approach takes into account system nonlinearities and estimates the stochastic states by using an extended Kalman filter technique to perform data fusion based on the popular bicycle model.
Technical Paper

Influence of Active Subsystems on Electric Vehicle Behavior and Energy Characteristics

2014-04-01
2014-01-0876
Nowadays there is a tendency to implement various active vehicle subsystems in a modern vehicle to improve its stability of motion, handling, comfort and other operation characteristics. Since each vehicle subsystem has own limits to generate supporting demand, their potential impact on vehicle dynamics should be analyzed for steady-state and transient vehicle behavior. Moreover, the additional research issue is the assessment of total energy consumption and energy losses, because a stand-alone operation of each vehicle subsystem will provide different impact on vehicle dynamics and they have own energy demands. The vehicle configuration includes (i) friction brake system, (ii) individual-wheel drive electric motors, (iii) wheel steer actuators, (iv) camber angle actuators, (v) dynamic tire pressure system and (vi) actuators generating additional normal forces through external spring, damping and stabilizer forces. A passenger car is investigated using commercial software.
Journal Article

Experimental Study on Continuous ABS Operation in Pure Regenerative Mode for Full Electric Vehicle

2015-05-01
2015-01-9109
Anti-lock braking functions of electric vehicles with individual wheel drive can be effectively realized through the operation of in-wheel or on-board motors in the pure regenerative mode or in the blending mode with conventional electro-hydraulic anti-lock braking system (ABS). The regenerative ABS has an advantage in simultaneous improvement of active safety, energy efficiency, and driving comfort. In scope of this topic, the presented work introduces results of experimental investigations on a pure electric ABS installed on an electric powered sport utility vehicle (SUV) test platform with individual switch reluctance on-board electric motors transferring torque to the each wheel through the single-speed gearbox and half-shaft. The study presents test results of the vehicle braking on inhomogeneous low-friction surface for the case of ABS operation with front electric motors.
Journal Article

Investigating the Parameterization of Dugoff Tire Model Using Experimental Tire-Ice Data

2016-09-27
2016-01-8039
Tire modeling plays an important role in the development of an Active Vehicle Safety System. As part of a larger project that aims at developing an integrated chassis control system, this study investigates the performance of a 19” all-season tire on ice for a sport utility vehicle. A design of experiment has been formulated to quantify the effect of operational parameters, specifically: wheel slip, normal load, and inflation pressure on the tire tractive performance. The experimental work was conducted on the Terramechanics Rig in the Advanced Vehicle Dynamics Laboratory at Virginia Tech. The paper investigates an approach for the parameterization of the Dugoff tire model based on the experimental data collected. Compared to other models, this model is attractive in terms of its simplicity, low number of parameters, and easy implementation for real-time applications.
X